Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the binormal vector of a curve
ResourceFunction["BinormalVector"][c,t] computes the binormal vector of curve c parametrized by t. |
Consider the curve:
| In[1]:= |
| Out[1]= | ![]() |
The binormal vector:
| In[2]:= |
| Out[2]= |
Use a helix:
| In[3]:= |
The binormal vector:
| In[4]:= |
| Out[4]= |
Calculate the normal vector using the resource function NormalVector:
| In[5]:= |
| Out[5]= |
The normal vector is the cross product of the binormal vector and the tangent vector. Check this using the previous computation along with the resource function TangentVector:
| In[6]:= |
| Out[6]= |
The binormal surface associated to a curve is generated by its binormal vector field. It can be computed with the resource function BinormalSurface:
| In[7]:= |
| Out[7]= |
Check this:
| In[8]:= |
| Out[8]= |
Combine the binormal surface with the helix curve:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
Define a unit speed helix:
| In[10]:= | ![]() |
Its binormal vector:
| In[11]:= |
| Out[11]= | ![]() |
The derivative of the binormal vector:
| In[12]:= |
| Out[12]= |
The torsion, via the resource function CurveTorsion:
| In[13]:= |
| Out[13]= |
The normal vector, via the resource function NormalVector:
| In[14]:= |
| Out[14]= |
The torsion multiplied by the normal is the derivative of the binormal:
| In[15]:= |
| Out[15]= |
Using FrenetSerretSystem, the binormal vector is the last element of the second List:
| In[16]:= |
| Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License