Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearCholeskyFactorization
Guides
Guide to ZigangPan`NonlinearCholeskyFactorization`
Symbols
approximateHJIequation
approximatenonlinearCholeskyfactorization
backsteppinglocaloptimalmatchingglobalinverseoptimal
backsteppinglocaloptimalmatchingglobalinverseoptimalNew
backsteppinglocaloptimalmatchingglobalinverseoptimalN
backsteppinglocaloptimalmatchingglobalinverseoptimalNNew
expandseriesntruncate
monomialsofgivenorder
ZigangPan`NonlinearCholeskyFactorization`
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
V
=
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
[
x
c
,
m
]
r
e
t
u
r
n
s
a
s
c
a
l
a
r
t
h
a
t
i
s
t
h
e
s
u
m
o
f
a
l
l
m
o
n
o
m
i
a
l
s
o
f
m
-
t
h
o
r
d
e
r
w
i
t
h
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
t
h
a
t
a
r
e
l
i
s
t
e
d
i
n
x
c
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
[
{
x
1
,
x
2
,
x
3
}
,
1
0
]
O
u
t
[
1
]
=
1
0
x
1
+
1
0
x
2
+
9
x
2
x
3
+
8
x
2
2
x
3
+
7
x
2
3
x
3
+
6
x
2
4
x
3
+
5
x
2
5
x
3
+
4
x
2
6
x
3
+
3
x
2
7
x
3
+
2
x
2
8
x
3
+
x
2
9
x
3
+
1
0
x
3
+
9
x
1
(
x
2
+
x
3
)
+
8
x
1
(
2
x
2
+
x
2
x
3
+
2
x
3
)
+
7
x
1
(
3
x
2
+
2
x
2
x
3
+
x
2
2
x
3
+
3
x
3
)
+
6
x
1
(
4
x
2
+
3
x
2
x
3
+
2
x
2
2
x
3
+
x
2
3
x
3
+
4
x
3
)
+
5
x
1
(
5
x
2
+
4
x
2
x
3
+
3
x
2
2
x
3
+
2
x
2
3
x
3
+
x
2
4
x
3
+
5
x
3
)
+
4
x
1
(
6
x
2
+
5
x
2
x
3
+
4
x
2
2
x
3
+
3
x
2
3
x
3
+
2
x
2
4
x
3
+
x
2
5
x
3
+
6
x
3
)
+
3
x
1
(
7
x
2
+
6
x
2
x
3
+
5
x
2
2
x
3
+
4
x
2
3
x
3
+
3
x
2
4
x
3
+
2
x
2
5
x
3
+
x
2
6
x
3
+
7
x
3
)
+
2
x
1
(
8
x
2
+
7
x
2
x
3
+
6
x
2
2
x
3
+
5
x
2
3
x
3
+
4
x
2
4
x
3
+
3
x
2
5
x
3
+
2
x
2
6
x
3
+
x
2
7
x
3
+
8
x
3
)
+
x
1
(
9
x
2
+
8
x
2
x
3
+
7
x
2
2
x
3
+
6
x
2
3
x
3
+
5
x
2
4
x
3
+
4
x
2
5
x
3
+
3
x
2
6
x
3
+
2
x
2
7
x
3
+
x
2
8
x
3
+
9
x
3
)
I
n
[
2
]
:
=
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
[
{
x
1
,
x
2
}
,
5
]
O
u
t
[
2
]
=
5
x
1
+
4
x
1
x
2
+
3
x
1
2
x
2
+
2
x
1
3
x
2
+
x
1
4
x
2
+
5
x
2
S
e
e
A
l
s
o
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
▪
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
▪
a
p
p
r
o
x
i
m
a
t
e
n
o
n
l
i
n
e
a
r
C
h
o
l
e
s
k
y
f
a
c
t
o
r
i
z
a
t
i
o
n
"
"