Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearCholeskyFactorization
Guides
Guide to ZigangPan`NonlinearCholeskyFactorization`
Symbols
approximateHJIequation
approximatenonlinearCholeskyfactorization
backsteppinglocaloptimalmatchingglobalinverseoptimal
backsteppinglocaloptimalmatchingglobalinverseoptimalNew
backsteppinglocaloptimalmatchingglobalinverseoptimalN
backsteppinglocaloptimalmatchingglobalinverseoptimalNNew
expandseriesntruncate
monomialsofgivenorder
ZigangPan`NonlinearCholeskyFactorization`
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
{
f
a
,
f
a
c
a
}
=
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
[
f
,
x
c
,
m
]
e
x
p
a
n
d
s
a
f
o
r
m
u
l
a
f
,
w
h
o
s
e
i
n
d
e
p
e
n
d
e
n
t
v
a
r
i
a
b
l
e
s
a
r
e
l
i
s
t
e
d
i
n
t
h
e
v
e
c
t
o
r
x
c
,
i
n
t
o
i
t
s
T
a
y
l
o
r
s
e
r
i
e
s
i
n
a
l
l
o
f
t
h
e
v
a
r
i
a
b
l
e
s
u
p
t
o
m
-
t
h
o
r
d
e
r
.
T
h
e
r
e
t
u
r
n
e
d
v
a
r
i
a
b
l
e
s
a
r
e
f
a
=
t
h
e
t
r
u
n
c
a
t
e
d
T
a
y
l
o
r
s
e
r
i
e
s
i
n
f
o
r
m
u
l
a
.
f
a
c
a
=
t
h
e
c
o
e
f
f
i
c
i
e
n
t
s
a
r
r
a
y
o
f
f
a
i
n
t
e
r
m
s
o
f
x
c
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
x
c
=
{
x
1
,
x
2
}
O
u
t
[
1
]
=
{
x
1
,
x
2
}
I
n
[
2
]
:
=
a
s
s
u
m
p
t
i
o
n
s
=
(
(
x
1
|
x
2
)
∈
R
e
a
l
s
)
O
u
t
[
2
]
=
(
x
1
|
x
2
)
∈
I
n
[
3
]
:
=
f
e
[
x
1
_
,
x
2
_
]
:
=
{
x
2
+
x
1
^
2
,
0
}
I
n
[
4
]
:
=
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
[
1
+
x
,
{
x
,
y
}
,
1
0
]
O
u
t
[
4
]
=
{
1
+
x
,
{
1
,
{
1
,
0
}
}
}
I
n
[
5
]
:
=
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
[
A
p
p
l
y
[
f
e
,
x
c
]
,
x
c
,
1
0
]
O
u
t
[
5
]
=
{
{
2
x
1
+
x
2
,
0
}
,
{
{
0
,
0
}
,
{
{
0
,
1
}
,
{
0
,
0
}
}
,
{
{
{
1
,
0
}
,
{
0
,
0
}
}
,
{
{
0
,
0
}
,
{
0
,
0
}
}
}
}
}
I
n
[
6
]
:
=
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
[
E
x
p
[
x
]
,
{
x
}
,
1
0
]
O
u
t
[
6
]
=
1
+
x
+
2
x
2
+
3
x
6
+
4
x
2
4
+
5
x
1
2
0
+
6
x
7
2
0
+
7
x
5
0
4
0
+
8
x
4
0
3
2
0
+
9
x
3
6
2
8
8
0
+
1
0
x
3
6
2
8
8
0
0
,
1
,
{
1
}
,
1
2
,
1
6
,
1
2
4
,
1
1
2
0
,
1
7
2
0
,
1
5
0
4
0
,
1
4
0
3
2
0
,
1
3
6
2
8
8
0
,
1
3
6
2
8
8
0
0
S
e
e
A
l
s
o
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
▪
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
▪
a
p
p
r
o
x
i
m
a
t
e
n
o
n
l
i
n
e
a
r
C
h
o
l
e
s
k
y
f
a
c
t
o
r
i
z
a
t
i
o
n
"
"