Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearCholeskyFactorization
Guides
Guide to ZigangPan`NonlinearCholeskyFactorization`
Symbols
approximateHJIequation
approximatenonlinearCholeskyfactorization
backsteppinglocaloptimalmatchingglobalinverseoptimal
backsteppinglocaloptimalmatchingglobalinverseoptimalNew
backsteppinglocaloptimalmatchingglobalinverseoptimalN
backsteppinglocaloptimalmatchingglobalinverseoptimalNNew
expandseriesntruncate
monomialsofgivenorder
ZigangPan`NonlinearCholeskyFactorization`
b
a
c
k
s
t
e
p
p
i
n
g
l
o
c
a
l
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
g
l
o
b
a
l
i
n
v
e
r
s
e
o
p
t
i
m
a
l
N
N
e
w
{
V
,
α
,
q
c
h
e
c
k
,
r
c
h
e
c
k
}
=
b
a
c
k
s
t
e
p
p
i
n
g
l
o
c
a
l
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
g
l
o
b
a
l
i
n
v
e
r
s
e
o
p
t
i
m
a
l
N
N
e
w
[
f
,
g
,
h
,
q
,
r
,
γ
,
x
c
,
m
,
x
1
m
,
x
1
M
,
ϵ
]
c
a
l
c
u
l
a
t
e
s
t
h
e
l
o
c
a
l
l
y
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
u
p
t
o
o
r
d
e
r
m
a
n
d
g
l
o
b
a
l
l
y
i
n
v
e
r
s
e
o
p
t
i
m
a
l
c
o
n
t
r
o
l
l
a
w
f
o
r
t
h
e
s
y
s
t
e
m
x
c
'
[
t
]
=
f
[
x
c
]
+
g
[
x
c
]
u
+
h
[
x
c
]
w
w
i
t
h
c
o
s
t
f
u
n
c
t
i
o
n
J
=
t
∫
0
(
q
[
x
c
[
τ
]
]
+
u
[
τ
]
.
r
[
x
c
[
τ
]
]
.
u
[
τ
]
-
γ
^
2
w
[
τ
]
.
w
[
τ
]
)
τ
f
[
x
c
]
=
{
a
1
[
x
1
]
x
2
+
f
1
[
x
1
]
,
a
2
[
x
1
,
x
2
]
x
3
+
f
2
[
x
1
,
x
2
]
,
.
.
.
f
n
[
x
1
,
.
.
.
,
x
n
]
}
g
[
x
c
]
=
{
{
0
}
,
{
0
}
,
.
.
.
,
{
b
[
x
c
]
}
}
h
[
x
c
]
=
{
h
1
[
x
1
]
,
h
2
[
x
1
,
x
2
]
,
.
.
.
h
n
[
x
1
,
.
.
.
,
x
n
]
}
f
[
0
]
=
0
;
a
1
[
x
1
]
≠
0
;
a
2
[
x
1
,
x
2
]
≠
0
;
.
.
.
b
[
x
c
]
≠
0
;
q
[
x
c
]
i
s
p
o
s
i
t
i
v
e
d
e
f
i
n
i
t
e
a
n
d
p
r
o
p
e
r
w
i
t
h
l
e
a
d
i
n
g
p
o
s
i
t
i
v
e
d
e
f
i
n
i
t
e
q
u
a
d
r
a
t
i
c
a
p
p
r
o
x
i
m
a
n
t
s
o
n
r
[
x
c
]
i
s
p
o
s
i
t
i
v
e
d
e
f
i
n
i
t
e
,
∀
x
c
∈
γ
>
0
ϵ
>
0
x
1
m
<
0
;
x
1
M
>
0
x
c
=
{
x
1
,
x
2
,
.
.
.
,
x
n
}
,
w
h
e
r
e
e
a
c
h
c
o
m
p
o
n
e
n
t
a
r
e
a
s
s
u
m
e
d
t
o
b
e
s
c
a
l
a
r
s
.
A
l
l
f
u
n
c
t
i
o
n
s
a
r
e
a
s
s
u
m
e
d
t
o
b
e
f
o
r
m
u
l
a
s
r
a
t
h
e
r
t
h
a
n
p
u
r
e
f
u
n
c
t
i
o
n
s
x
c
∈
(
x
1
m
,
x
1
M
)
n
-
1
=
:
;
f
,
g
,
a
n
d
h
a
r
e
d
e
f
i
n
e
d
o
n
.
q
:
→
i
s
p
o
s
i
t
i
v
e
d
e
f
i
n
i
t
e
a
n
d
p
r
o
p
e
r
,
r
:
+
i
s
p
o
s
i
t
i
v
e
d
e
f
i
n
i
t
e
.
W
h
e
n
ϵ
=
m
,
x
1
m
=
-
∞
,
a
n
d
x
1
M
=
∞
,
t
h
e
c
o
m
m
a
n
d
i
s
e
q
u
i
v
a
l
e
n
t
t
o
b
a
c
k
s
t
e
p
p
i
n
g
l
o
c
a
l
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
g
l
o
b
a
l
i
n
v
e
r
s
e
o
p
t
i
m
a
l
N
e
w
[
f
,
g
,
h
,
q
,
r
,
γ
,
x
c
,
m
]
.
T
h
e
r
e
t
u
r
n
e
d
v
a
r
i
a
b
l
e
s
:
V
=
t
h
e
f
o
r
m
u
l
a
o
f
t
h
e
r
e
s
u
l
t
i
n
g
v
a
l
u
e
f
u
n
c
t
i
o
n
.
α
=
t
h
e
f
o
r
m
u
l
a
o
f
t
h
e
r
e
s
u
l
t
i
n
g
c
o
n
t
r
o
l
l
a
w
.
q
c
h
e
c
k
=
t
h
e
f
o
r
m
u
l
a
o
f
t
h
e
r
e
s
u
l
t
i
n
g
w
e
i
g
h
t
i
n
g
f
u
n
c
t
i
o
n
o
n
s
t
a
t
e
v
a
r
i
a
b
l
e
s
.
r
c
h
e
c
k
=
t
h
e
f
o
r
m
u
l
a
o
f
t
h
e
r
e
s
u
l
t
i
n
g
w
e
i
g
h
t
i
n
g
f
u
n
c
t
i
o
n
o
n
t
h
e
c
o
n
t
r
o
l
v
a
r
i
a
b
l
e
s
.
C
o
m
p
a
r
e
d
t
o
b
a
c
k
s
t
e
p
p
i
n
g
l
o
c
a
l
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
g
l
o
b
a
l
i
n
v
e
r
s
e
o
p
t
i
m
a
l
N
f
u
n
c
t
i
o
n
,
t
h
i
s
d
e
s
i
g
n
r
e
s
u
l
t
s
i
n
s
m
a
l
l
e
r
c
o
n
t
r
o
l
l
e
r
m
a
g
n
i
t
u
d
e
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
N
e
e
d
s
[
"
Z
i
g
a
n
g
P
a
n
`
D
i
f
f
e
r
e
n
t
i
a
l
E
q
u
a
t
i
o
n
S
o
l
v
e
r
`
"
]
I
n
[
2
]
:
=
x
c
=
{
x
1
,
x
2
}
;
x
1
m
=
-
2
;
x
1
M
=
2
;
I
n
[
3
]
:
=
$
A
s
s
u
m
p
t
i
o
n
s
=
(
(
x
1
|
x
2
)
∈
R
e
a
l
s
)
;
I
n
[
4
]
:
=
f
e
[
x
1
_
,
x
2
_
]
:
=
{
x
2
+
x
1
^
2
,
0
}
I
n
[
5
]
:
=
g
e
[
x
1
_
,
x
2
_
]
:
=
{
{
0
}
,
{
1
}
}
I
n
[
6
]
:
=
h
e
[
x
1
_
,
x
2
_
]
:
=
{
{
1
}
,
{
0
}
}
I
n
[
7
]
:
=
q
e
[
x
1
_
,
x
2
_
]
:
=
x
1
^
2
/
(
x
1
-
x
1
m
)
/
(
x
1
M
-
x
1
)
+
x
2
^
2
I
n
[
8
]
:
=
γ
=
4
;
I
n
[
9
]
:
=
f
=
A
p
p
l
y
[
f
e
,
x
c
]
;
I
n
[
1
0
]
:
=
g
=
A
p
p
l
y
[
g
e
,
x
c
]
;
I
n
[
1
1
]
:
=
h
=
A
p
p
l
y
[
h
e
,
x
c
]
;
I
n
[
1
2
]
:
=
r
=
{
{
1
}
}
;
I
n
[
1
3
]
:
=
q
=
A
p
p
l
y
[
q
e
,
x
c
]
;
I
n
[
1
4
]
:
=
s
=
(
g
.
I
n
v
e
r
s
e
[
r
]
.
T
r
a
n
s
p
o
s
e
[
g
]
-
h
.
T
r
a
n
s
p
o
s
e
[
h
]
/
γ
^
2
)
/
4
;
I
n
[
1
5
]
:
=
V
a
4
=
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
[
f
,
s
,
q
,
x
c
,
4
]
O
u
t
[
1
5
]
=
0
.
7
4
5
6
6
0
7
8
3
5
3
0
9
8
2
6
9
3
9
8
7
4
2
5
8
3
1
7
3
5
2
4
0
7
6
9
6
9
3
2
4
1
6
2
7
4
5
4
9
5
2
x
1
+
1
.
7
9
9
9
5
0
3
7
7
0
4
0
3
8
9
6
1
6
5
4
2
2
5
3
2
4
0
0
5
5
4
4
6
0
7
9
8
4
0
1
1
2
4
0
3
0
9
8
3
3
x
1
+
3
.
5
9
4
5
8
9
2
0
0
8
3
3
8
6
1
2
3
2
7
8
2
7
2
7
4
7
9
4
1
4
8
9
6
8
3
6
5
6
6
9
3
2
8
9
6
9
4
x
1
+
1
.
0
6
7
2
4
0
6
0
1
2
8
1
6
4
6
2
1
7
5
2
4
3
9
2
0
1
4
9
5
7
5
5
4
0
1
4
9
8
7
7
2
4
6
6
7
9
4
0
2
x
1
x
2
+
3
.
2
6
6
3
2
0
9
0
5
6
2
3
7
8
5
4
7
4
1
1
3
1
8
5
2
2
4
0
2
2
8
3
1
5
1
3
1
8
4
5
5
1
5
3
9
7
3
6
2
x
1
x
2
+
7
.
3
4
7
5
9
1
5
1
8
7
2
2
8
4
4
6
1
5
5
1
9
3
9
2
7
7
1
4
8
0
3
6
1
1
9
7
7
9
8
5
2
6
2
6
1
0
3
x
1
x
2
+
1
.
4
4
3
9
6
5
8
9
8
2
6
7
7
3
4
8
4
2
9
7
3
9
2
0
7
4
4
7
7
9
1
5
2
4
1
2
9
2
8
4
8
3
6
3
1
9
2
5
4
2
x
2
+
2
.
0
9
4
3
4
8
3
0
4
7
9
4
6
6
2
9
4
8
2
8
9
8
6
6
9
3
8
9
1
5
0
3
6
5
0
0
8
8
3
9
7
2
3
1
0
0
1
3
3
x
1
2
x
2
+
5
.
6
8
7
2
6
4
6
7
0
8
9
9
7
6
3
7
7
8
6
1
7
7
3
4
7
5
9
0
6
9
6
4
3
0
4
7
5
3
6
4
8
8
8
4
4
9
2
x
1
2
x
2
+
0
.
4
9
9
5
9
5
7
0
3
8
9
7
6
6
0
1
4
8
2
7
6
0
7
5
0
8
9
9
7
6
1
2
8
7
0
2
3
3
9
3
9
7
7
9
4
0
8
7
4
3
x
2
+
1
.
9
7
6
4
9
9
8
2
9
7
2
1
6
8
4
8
6
5
0
1
8
2
3
5
3
9
9
4
3
5
6
5
3
8
9
4
1
8
2
5
0
7
4
9
6
1
9
x
1
3
x
2
+
0
.
2
6
8
2
4
7
9
8
3
5
0
6
9
5
9
9
6
6
8
1
0
9
7
1
9
8
4
4
9
1
7
3
1
1
3
0
0
8
5
0
5
7
4
8
1
6
7
3
4
x
2
I
n
[
1
6
]
:
=
a
n
s
=
b
a
c
k
s
t
e
p
p
i
n
g
l
o
c
a
l
o
p
t
i
m
a
l
m
a
t
c
h
i
n
g
g
l
o
b
a
l
i
n
v
e
r
s
e
o
p
t
i
m
a
l
N
N
e
w
[
f
,
g
,
h
,
q
,
r
,
γ
,
x
c
,
3
,
x
1
m
,
x
1
M
,
3
]
;
I
n
[
1
7
]
:
=
V
x
=
D
[
a
n
s
〚
1
〛
,
{
x
c
}
]
;
I
n
[
1
8
]
:
=
P
l
o
t
3
D
[
a
n
s
〚
1
〛
,
{
x
1
,
-
2
,
2
}
,
{
x
2
,
-
5
,
5
}
,
P
l
o
t
R
a
n
g
e
{
0
,
3
}
]
O
u
t
[
1
8
]
=
I
n
[
1
9
]
:
=
P
l
o
t
3
D
[
a
n
s
〚
4
〛
,
{
x
1
,
-
2
,
2
}
,
{
x
2
,
-
5
,
5
}
,
P
l
o
t
R
a
n
g
e
{
0
,
2
}
]
O
u
t
[
1
9
]
=
I
n
[
2
0
]
:
=
P
l
o
t
3
D
[
a
n
s
〚
3
〛
,
{
x
1
,
-
2
,
2
}
,
{
x
2
,
-
5
,
5
}
,
P
l
o
t
R
a
n
g
e
{
0
,
2
0
}
]
O
u
t
[
2
0
]
=
I
n
[
2
1
]
:
=
P
l
o
t
3
D
[
a
n
s
〚
2
〛
,
{
x
1
,
-
2
,
2
}
,
{
x
2
,
-
5
,
5
}
,
P
l
o
t
R
a
n
g
e
{
-
6
0
,
1
0
}
]
O
u
t
[
2
1
]
=
I
n
[
2
2
]
:
=
P
l
o
t
3
D
[
V
x
.
f
-
V
x
.
(
g
.
I
n
v
e
r
s
e
[
a
n
s
〚
4
〛
]
.
T
r
a
n
s
p
o
s
e
[
g
]
-
1
/
γ
^
2
h
.
T
r
a
n
s
p
o
s
e
[
h
]
)
.
V
x
/
4
+
a
n
s
〚
3
〛
,
{
x
1
,
-
1
.
9
9
,
1
.
9
9
}
,
{
x
2
,
-
5
,
5
}
,
P
l
o
t
R
a
n
g
e
{
-
0
.
1
,
0
.
1
}
]
O
u
t
[
2
2
]
=