Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearCholeskyFactorization
Guides
Guide to ZigangPan`NonlinearCholeskyFactorization`
Symbols
approximateHJIequation
approximatenonlinearCholeskyfactorization
backsteppinglocaloptimalmatchingglobalinverseoptimal
backsteppinglocaloptimalmatchingglobalinverseoptimalNew
backsteppinglocaloptimalmatchingglobalinverseoptimalN
backsteppinglocaloptimalmatchingglobalinverseoptimalNNew
expandseriesntruncate
monomialsofgivenorder
ZigangPan`NonlinearCholeskyFactorization`
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
V
a
=
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
[
f
,
s
,
q
,
x
c
,
m
]
r
e
t
u
r
n
s
t
h
e
l
o
c
a
l
T
a
y
l
o
r
s
e
r
i
e
s
s
o
l
u
t
i
o
n
t
o
t
h
e
H
J
I
e
q
u
a
t
i
o
n
∂
x
c
V
a
·
f
-
∂
x
c
V
a
·
s
·
(
∂
x
c
V
a
)
'
+
q
=
0
.
V
a
i
s
t
h
e
s
o
l
u
t
i
o
n
t
r
u
n
c
a
t
e
d
u
p
t
o
m
-
t
h
o
r
d
e
r
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
x
c
=
{
x
1
,
x
2
}
;
I
n
[
2
]
:
=
$
A
s
s
u
m
p
t
i
o
n
s
=
(
(
x
1
|
x
2
)
∈
R
e
a
l
s
)
O
u
t
[
2
]
=
(
x
1
|
x
2
)
∈
I
n
[
3
]
:
=
f
e
[
x
1
_
,
x
2
_
]
:
=
{
x
2
+
x
1
^
2
,
0
}
I
n
[
4
]
:
=
g
e
[
x
1
_
,
x
2
_
]
:
=
{
{
0
}
,
{
1
}
}
I
n
[
5
]
:
=
h
e
[
x
1
_
,
x
2
_
]
:
=
{
{
1
}
,
{
0
}
}
I
n
[
6
]
:
=
q
e
[
x
1
_
,
x
2
_
]
:
=
x
1
^
2
+
x
2
^
2
I
n
[
7
]
:
=
γ
=
4
;
I
n
[
8
]
:
=
f
=
A
p
p
l
y
[
f
e
,
x
c
]
;
I
n
[
9
]
:
=
g
=
A
p
p
l
y
[
g
e
,
x
c
]
;
I
n
[
1
0
]
:
=
h
=
A
p
p
l
y
[
h
e
,
x
c
]
;
I
n
[
1
1
]
:
=
r
=
{
{
1
}
}
;
I
n
[
1
2
]
:
=
q
=
A
p
p
l
y
[
q
e
,
x
c
]
;
I
n
[
1
3
]
:
=
s
=
(
g
.
I
n
v
e
r
s
e
[
r
]
.
T
r
a
n
s
p
o
s
e
[
g
]
-
h
.
T
r
a
n
s
p
o
s
e
[
h
]
/
γ
^
2
)
/
4
;
I
n
[
1
4
]
:
=
V
a
2
=
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
[
f
,
s
,
q
,
x
c
,
2
]
O
u
t
[
1
4
]
=
1
.
8
7
1
7
0
0
7
1
5
4
8
9
5
4
6
5
2
8
3
1
6
1
7
6
0
2
0
9
4
2
8
0
5
8
4
6
5
2
3
4
3
1
7
4
6
6
3
8
6
2
x
1
+
2
.
2
0
8
1
2
4
9
7
2
0
2
7
4
0
3
1
8
5
3
6
7
9
7
4
7
7
4
7
7
8
8
5
8
3
6
8
9
8
1
6
4
8
4
4
4
6
7
5
0
x
1
x
2
+
1
.
8
1
2
2
6
6
4
2
5
0
4
3
8
8
0
0
6
8
4
1
3
8
2
7
8
2
9
8
7
9
2
9
4
1
8
4
3
9
8
6
8
0
2
7
8
1
1
6
4
2
x
2
I
n
[
1
5
]
:
=
V
a
3
=
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
[
f
,
s
,
q
,
x
c
,
3
]
O
u
t
[
1
5
]
=
1
.
8
7
1
7
0
0
7
1
5
4
8
9
5
4
6
5
2
8
3
1
6
1
7
6
0
2
0
9
4
2
8
0
5
8
4
6
5
2
3
4
3
1
7
4
6
6
3
8
6
2
x
1
+
2
.
9
8
2
3
6
9
0
2
3
9
5
0
4
5
7
1
9
6
2
3
6
6
2
5
7
4
5
5
0
1
4
3
3
4
3
9
4
8
6
4
5
8
0
4
4
2
9
3
3
3
x
1
+
2
.
2
0
8
1
2
4
9
7
2
0
2
7
4
0
3
1
8
5
3
6
7
9
7
4
7
7
4
7
7
8
8
5
8
3
6
8
9
8
1
6
4
8
4
4
4
6
7
5
0
x
1
x
2
+
4
.
3
3
8
5
6
3
8
5
9
2
9
7
9
6
0
0
0
0
7
5
5
1
9
2
6
3
9
7
1
5
8
7
7
8
7
5
5
5
0
5
5
6
3
2
5
1
9
1
2
x
1
x
2
+
1
.
8
1
2
2
6
6
4
2
5
0
4
3
8
8
0
0
6
8
4
1
3
8
2
7
8
2
9
8
7
9
2
9
4
1
8
4
3
9
8
6
8
0
2
7
8
1
1
6
4
2
x
2
+
2
.
2
3
0
4
1
9
6
7
9
9
9
2
8
5
9
9
9
3
7
3
4
9
9
2
7
9
9
8
1
3
1
9
3
9
3
6
0
9
8
3
4
9
9
7
7
0
0
5
0
x
1
2
x
2
+
0
.
4
3
8
5
5
3
4
9
9
5
6
4
6
5
0
3
4
8
7
2
9
1
8
7
6
6
2
0
6
1
6
0
3
9
5
9
6
9
8
4
5
5
1
0
7
1
1
3
5
3
x
2
I
n
[
1
6
]
:
=
V
a
4
=
a
p
p
r
o
x
i
m
a
t
e
H
J
I
e
q
u
a
t
i
o
n
[
f
,
s
,
q
,
x
c
,
4
]
O
u
t
[
1
6
]
=
1
.
8
7
1
7
0
0
7
1
5
4
8
9
5
4
6
5
2
8
3
1
6
1
7
6
0
2
0
9
4
2
8
0
5
8
4
6
5
2
3
4
3
1
7
4
6
6
3
8
6
2
x
1
+
2
.
9
8
2
3
6
9
0
2
3
9
5
0
4
5
7
1
9
6
2
3
6
6
2
5
7
4
5
5
0
1
4
3
3
4
3
9
4
8
6
4
5
8
0
4
4
2
9
3
3
3
x
1
+
4
.
0
8
9
8
2
7
4
3
2
8
6
1
5
3
1
1
2
7
8
0
7
7
9
4
5
3
4
1
2
5
2
9
5
1
4
2
8
6
2
4
0
7
2
2
8
9
3
4
x
1
+
2
.
2
0
8
1
2
4
9
7
2
0
2
7
4
0
3
1
8
5
3
6
7
9
7
4
7
7
4
7
7
8
8
5
8
3
6
8
9
8
1
6
4
8
4
4
4
6
7
5
0
x
1
x
2
+
4
.
3
3
8
5
6
3
8
5
9
2
9
7
9
6
0
0
0
0
7
5
5
1
9
2
6
3
9
7
1
5
8
7
7
8
7
5
5
5
0
5
5
6
3
2
5
1
9
1
2
x
1
x
2
+
6
.
7
0
7
8
1
6
7
0
9
5
3
4
8
2
8
5
9
9
2
0
6
5
0
8
6
1
3
6
9
6
2
2
6
8
6
3
8
1
0
8
2
2
4
9
5
8
6
3
x
1
x
2
+
1
.
8
1
2
2
6
6
4
2
5
0
4
3
8
8
0
0
6
8
4
1
3
8
2
7
8
2
9
8
7
9
2
9
4
1
8
4
3
9
8
6
8
0
2
7
8
1
1
6
4
2
x
2
+
2
.
2
3
0
4
1
9
6
7
9
9
9
2
8
5
9
9
9
3
7
3
4
9
9
2
7
9
9
8
1
3
1
9
3
9
3
6
0
9
8
3
4
9
9
7
7
0
0
5
0
x
1
2
x
2
+
4
.
1
2
6
7
1
0
0
2
1
1
3
4
2
5
0
9
5
9
9
4
6
7
8
9
3
0
7
1
3
0
2
1
1
9
4
6
2
1
3
4
4
3
2
9
0
8
0
2
x
1
2
x
2
+
0
.
4
3
8
5
5
3
4
9
9
5
6
4
6
5
0
3
4
8
7
2
9
1
8
7
6
6
2
0
6
1
6
0
3
9
5
9
6
9
8
4
5
5
1
0
7
1
1
3
5
3
x
2
+
1
.
1
2
3
6
7
4
4
9
7
8
8
0
3
2
0
1
8
6
5
1
6
3
6
6
7
3
1
0
6
1
8
7
9
6
6
0
0
5
6
9
7
9
1
6
3
6
4
x
1
3
x
2
+
0
.
1
1
6
7
3
2
6
4
3
3
9
8
5
1
1
0
2
4
3
8
1
3
2
7
8
6
6
4
2
3
1
5
1
1
2
7
9
2
8
8
8
5
4
6
8
9
4
7
4
x
2
S
e
e
A
l
s
o
e
x
p
a
n
d
s
e
r
i
e
s
n
t
r
u
n
c
a
t
e
▪
m
o
n
o
m
i
a
l
s
o
f
g
i
v
e
n
o
r
d
e
r
▪
a
p
p
r
o
x
i
m
a
t
e
n
o
n
l
i
n
e
a
r
C
h
o
l
e
s
k
y
f
a
c
t
o
r
i
z
a
t
i
o
n
"
"