Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumChemistry
Symbols
ComputeVibrationalModes
ElectronicStructurePlot3D
ElectronicStructureResult
ModelChemistry
OptimizeMoleculeGeometry
PotentialEnergyScan
SinglePointEnergy
WolframChemistry`QuantumChemistry`
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
[
m
o
l
]
r
e
t
u
r
n
s
t
h
e
g
r
o
u
n
d
s
t
a
t
e
e
l
e
c
t
r
o
n
i
c
e
n
e
r
g
y
f
o
r
t
h
e
m
o
l
e
c
u
l
e
m
o
l
.
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
[
m
o
l
,
m
o
d
e
l
C
h
e
m
i
s
t
r
y
]
u
s
e
s
t
h
e
s
p
e
c
i
f
i
e
d
m
o
d
e
l
c
h
e
m
i
s
t
r
y
t
o
c
o
m
p
u
t
e
t
h
e
e
n
e
r
g
y
.
Examples
(
2
)
Basic Examples
(
2
)
Compute the ground-state energy for CO2:
I
n
[
1
]
:
=
r
e
s
=
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
[
M
o
l
e
c
u
l
e
[
"
c
a
r
b
o
n
d
i
o
x
i
d
e
"
]
]
O
u
t
[
1
]
=
E
l
e
c
t
r
o
n
i
c
S
t
r
u
c
t
u
r
e
R
e
s
u
l
t
M
o
l
e
c
u
l
e
:
C
O
2
C
a
l
c
u
l
a
t
i
o
n
t
y
p
e
:
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
M
e
t
h
o
d
:
H
a
r
t
r
e
e
F
o
c
k
The returned value is an
E
l
e
c
t
r
o
n
i
c
S
t
r
u
c
t
u
r
e
R
e
s
u
l
t
, since there is a lot of information available. You can get the energy directly:
I
n
[
2
]
:
=
r
e
s
[
"
E
n
e
r
g
y
"
]
O
u
t
[
2
]
=
-
5
0
3
2
.
3
6
e
V
Or you can ask for the
"
P
r
i
m
a
r
y
R
e
s
u
l
t
"
I
n
[
3
]
:
=
r
e
s
[
"
P
r
i
m
a
r
y
R
e
s
u
l
t
"
]
O
u
t
[
3
]
=
-
5
0
3
2
.
3
6
e
V
The available properties:
I
n
[
4
]
:
=
r
e
s
[
"
P
r
o
p
e
r
t
i
e
s
"
]
O
u
t
[
4
]
=
{
A
t
o
m
C
o
o
r
d
i
n
a
t
e
s
,
A
t
o
m
C
o
u
n
t
,
A
t
o
m
i
c
N
u
m
b
e
r
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
I
n
d
i
c
e
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
N
a
m
e
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
O
v
e
r
l
a
p
M
a
t
r
i
x
,
A
t
o
m
M
a
s
s
e
s
,
B
a
s
i
s
F
u
n
c
t
i
o
n
C
o
u
n
t
,
C
a
l
c
u
l
a
t
i
o
n
T
y
p
e
,
C
o
r
e
E
l
e
c
t
r
o
n
C
o
u
n
t
,
G
a
u
s
s
i
a
n
B
a
s
i
s
,
I
n
p
u
t
M
o
l
e
c
u
l
e
,
M
e
t
a
I
n
f
o
r
m
a
t
i
o
n
,
M
e
t
h
o
d
,
M
o
l
e
c
u
l
a
r
M
u
l
t
i
p
o
l
e
M
o
m
e
n
t
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
C
o
e
f
f
i
c
i
e
n
t
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
C
o
u
n
t
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
E
n
e
r
g
i
e
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
I
n
d
i
c
e
s
O
f
H
O
M
O
,
M
o
l
e
c
u
l
e
,
M
u
l
t
i
p
l
i
c
i
t
y
,
N
e
t
C
h
a
r
g
e
,
P
a
r
t
i
a
l
C
h
a
r
g
e
s
,
R
o
t
a
t
i
o
n
a
l
C
o
n
s
t
a
n
t
s
,
S
C
F
E
n
e
r
g
i
e
s
}
Compute the ground state energy of hexanol using DFT and a larger basis set:
I
n
[
1
]
:
=
r
e
s
=
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
M
o
l
e
c
u
l
e
[
"
h
e
x
a
n
o
l
"
]
,
M
o
d
e
l
C
h
e
m
i
s
t
r
y
[
"
D
e
n
s
i
t
y
F
u
n
c
t
i
o
n
a
l
T
h
e
o
r
y
"
,
"
6
-
3
1
+
G
"
]
O
u
t
[
1
]
=
E
l
e
c
t
r
o
n
i
c
S
t
r
u
c
t
u
r
e
R
e
s
u
l
t
M
o
l
e
c
u
l
e
:
C
6
H
1
4
O
C
a
l
c
u
l
a
t
i
o
n
t
y
p
e
:
S
i
n
g
l
e
P
o
i
n
t
E
n
e
r
g
y
M
e
t
h
o
d
:
D
e
n
s
i
t
y
F
u
n
c
t
i
o
n
a
l
T
h
e
o
r
y
Find the energy:
I
n
[
2
]
:
=
r
e
s
[
"
P
r
i
m
a
r
y
R
e
s
u
l
t
"
]
O
u
t
[
2
]
=
-
8
4
1
9
.
5
4
e
V
"
"