Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumChemistry
Symbols
ComputeVibrationalModes
ElectronicStructurePlot3D
ElectronicStructureResult
ModelChemistry
OptimizeMoleculeGeometry
PotentialEnergyScan
SinglePointEnergy
WolframChemistry`QuantumChemistry`
O
p
t
i
m
i
z
e
M
o
l
e
c
u
l
e
G
e
o
m
e
t
r
y
O
p
t
i
m
i
z
e
M
o
l
e
c
u
l
e
G
e
o
m
e
t
r
y
[
m
o
l
]
f
i
n
d
s
a
s
e
t
o
f
3
D
c
o
o
r
d
i
n
a
t
e
s
f
o
r
m
o
l
w
h
i
c
h
m
i
n
i
m
i
z
e
s
t
h
e
e
l
e
c
t
r
o
n
i
c
e
n
e
r
g
y
.
O
p
t
i
m
i
z
e
M
o
l
e
c
u
l
e
G
e
o
m
e
t
r
y
[
m
o
l
,
m
o
d
e
l
C
h
e
m
i
s
t
r
y
]
u
s
e
s
t
h
e
s
p
e
c
i
f
i
e
d
m
o
d
e
l
c
h
e
m
i
s
t
r
y
t
o
c
o
m
p
u
t
e
t
h
e
e
l
e
c
t
r
o
n
i
c
e
n
e
r
g
y
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
m
o
l
1
=
M
o
l
e
c
u
l
e
M
o
d
i
f
y
[
M
o
l
e
c
u
l
e
[
"
w
a
t
e
r
"
]
,
{
"
S
e
t
B
o
n
d
L
e
n
g
t
h
"
,
{
1
,
2
}
Q
u
a
n
t
i
t
y
[
2
,
"
A
n
g
s
t
r
o
m
s
"
]
}
]
O
u
t
[
1
]
=
M
o
l
e
c
u
l
e
F
o
r
m
u
l
a
:
H
2
O
A
t
o
m
s
:
3
B
o
n
d
s
:
2
I
n
[
2
]
:
=
m
o
l
2
=
O
p
t
i
m
i
z
e
M
o
l
e
c
u
l
e
G
e
o
m
e
t
r
y
[
m
o
l
1
]
[
"
R
e
s
u
l
t
M
o
l
e
c
u
l
e
"
]
O
u
t
[
2
]
=
M
o
l
e
c
u
l
e
F
o
r
m
u
l
a
:
H
2
O
A
t
o
m
s
:
3
B
o
n
d
s
:
2
I
n
[
3
]
:
=
M
o
l
e
c
u
l
e
P
l
o
t
3
D
/
@
{
m
o
l
1
,
m
o
l
2
}
O
u
t
[
3
]
=
,
"
"