Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumChemistry
Symbols
ComputeVibrationalModes
ElectronicStructurePlot3D
ElectronicStructureResult
ModelChemistry
OptimizeMoleculeGeometry
PotentialEnergyScan
SinglePointEnergy
WolframChemistry`QuantumChemistry`
C
o
m
p
u
t
e
V
i
b
r
a
t
i
o
n
a
l
M
o
d
e
s
C
o
m
p
u
t
e
V
i
b
r
a
t
i
o
n
a
l
M
o
d
e
s
[
m
o
l
,
m
o
d
e
l
C
h
e
m
i
s
t
r
y
]
p
e
r
f
o
r
m
s
a
n
o
r
m
a
l
-
m
o
d
e
a
n
a
l
y
s
i
s
o
f
t
h
e
m
o
l
e
c
u
l
e
.
C
o
m
p
u
t
e
V
i
b
r
a
t
i
o
n
a
l
M
o
d
e
s
[
e
l
e
c
t
r
o
n
i
c
S
t
r
u
c
t
u
r
e
R
e
s
u
l
t
]
u
s
e
s
t
h
e
r
e
s
u
l
t
s
f
r
o
m
a
g
e
o
m
e
t
r
y
o
p
t
i
m
i
z
a
t
i
o
n
.
Examples
(
1
)
Basic Examples
(
1
)
Compute the vibrational modes of water:
I
n
[
1
]
:
=
m
c
=
M
o
d
e
l
C
h
e
m
i
s
t
r
y
[
"
H
a
r
t
r
e
e
F
o
c
k
"
,
"
6
-
3
1
+
G
"
]
;
m
o
l
=
O
p
t
i
m
i
z
e
M
o
l
e
c
u
l
e
G
e
o
m
e
t
r
y
[
M
o
l
e
c
u
l
e
[
"
w
a
t
e
r
"
]
,
m
c
]
[
"
R
e
s
u
l
t
M
o
l
e
c
u
l
e
"
]
;
r
e
s
=
C
o
m
p
u
t
e
V
i
b
r
a
t
i
o
n
a
l
M
o
d
e
s
[
m
o
l
,
m
c
]
O
u
t
[
1
]
=
E
l
e
c
t
r
o
n
i
c
S
t
r
u
c
t
u
r
e
R
e
s
u
l
t
M
o
l
e
c
u
l
e
:
H
2
O
C
a
l
c
u
l
a
t
i
o
n
t
y
p
e
:
V
i
b
r
a
t
i
o
n
a
l
A
n
a
l
y
s
i
s
M
e
t
h
o
d
:
H
a
r
t
r
e
e
F
o
c
k
Find the frequencies:
I
n
[
2
]
:
=
r
e
s
[
"
V
i
b
r
a
t
i
o
n
a
l
F
r
e
q
u
e
n
c
i
e
s
"
]
/
/
N
o
r
m
a
l
O
u
t
[
2
]
=
1
7
0
5
.
2
4
w
a
v
e
n
u
m
b
e
r
s
,
3
9
8
7
.
1
6
w
a
v
e
n
u
m
b
e
r
s
,
4
1
4
4
.
4
7
w
a
v
e
n
u
m
b
e
r
s
Find all available properties:
I
n
[
3
]
:
=
r
e
s
[
"
P
r
o
p
e
r
t
i
e
s
"
]
O
u
t
[
3
]
=
{
A
t
o
m
C
o
o
r
d
i
n
a
t
e
s
,
A
t
o
m
C
o
u
n
t
,
A
t
o
m
i
c
N
u
m
b
e
r
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
I
n
d
i
c
e
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
N
a
m
e
s
,
A
t
o
m
i
c
O
r
b
i
t
a
l
O
v
e
r
l
a
p
M
a
t
r
i
x
,
A
t
o
m
M
a
s
s
e
s
,
B
a
s
i
s
F
u
n
c
t
i
o
n
C
o
u
n
t
,
C
a
l
c
u
l
a
t
i
o
n
T
y
p
e
,
C
a
r
t
e
s
i
a
n
D
i
s
p
l
a
c
e
m
e
n
t
V
e
c
t
o
r
s
,
C
o
r
e
E
l
e
c
t
r
o
n
C
o
u
n
t
,
G
a
u
s
s
i
a
n
B
a
s
i
s
,
H
e
s
s
i
a
n
,
I
n
p
u
t
M
o
l
e
c
u
l
e
,
M
a
s
s
W
e
i
g
h
t
e
d
D
i
s
p
l
a
c
e
m
e
n
t
V
e
c
t
o
r
s
,
M
e
t
a
I
n
f
o
r
m
a
t
i
o
n
,
M
e
t
h
o
d
,
M
o
l
e
c
u
l
a
r
M
u
l
t
i
p
o
l
e
M
o
m
e
n
t
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
C
o
e
f
f
i
c
i
e
n
t
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
C
o
u
n
t
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
E
n
e
r
g
i
e
s
,
M
o
l
e
c
u
l
a
r
O
r
b
i
t
a
l
I
n
d
i
c
e
s
O
f
H
O
M
O
,
M
o
l
e
c
u
l
e
,
M
u
l
t
i
p
l
i
c
i
t
y
,
N
e
t
C
h
a
r
g
e
,
P
a
r
t
i
a
l
C
h
a
r
g
e
s
,
R
o
t
a
t
i
o
n
a
l
C
o
n
s
t
a
n
t
s
,
S
C
F
E
n
e
r
g
i
e
s
,
V
i
b
r
a
t
i
o
n
a
l
F
o
r
c
e
C
o
n
s
t
a
n
t
s
,
V
i
b
r
a
t
i
o
n
a
l
F
r
e
q
u
e
n
c
i
e
s
,
V
i
b
r
a
t
i
o
n
a
l
T
e
m
p
e
r
a
t
u
r
e
s
}
To visualize the animations first we need the displacement vectors for the vibrational modes:
I
n
[
4
]
:
=
d
i
s
p
l
a
c
e
m
e
n
t
s
=
r
e
s
[
"
C
a
r
t
e
s
i
a
n
D
i
s
p
l
a
c
e
m
e
n
t
V
e
c
t
o
r
s
"
]
O
u
t
[
4
]
=
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
3
,
3
,
3
}
U
n
i
t
:
A
n
g
s
t
r
o
m
s
I
n
[
5
]
:
=
c
o
o
r
d
s
=
m
o
l
[
"
A
t
o
m
C
o
o
r
d
i
n
a
t
e
s
"
]
O
u
t
[
5
]
=
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
3
,
3
}
U
n
i
t
:
A
n
g
s
t
r
o
m
s
I
n
[
6
]
:
=
f
r
e
q
u
e
n
c
i
e
s
=
r
e
s
[
"
V
i
b
r
a
t
i
o
n
a
l
F
r
e
q
u
e
n
c
i
e
s
"
]
O
u
t
[
6
]
=
Q
u
a
n
t
i
t
y
A
r
r
a
y
D
i
m
e
n
s
i
o
n
s
:
{
3
}
U
n
i
t
:
W
a
v
e
n
u
m
b
e
r
s
I
n
[
7
]
:
=
v
p
=
{
0
.
0
7
,
-
0
.
5
8
,
3
.
4
}
;
v
v
=
{
0
,
0
,
1
}
;
m
o
l
P
l
o
t
3
D
[
ω
t
_
,
m
o
d
e
_
]
:
=
M
o
l
e
c
u
l
e
P
l
o
t
3
D
[
m
o
l
,
A
t
o
m
C
o
o
r
d
i
n
a
t
e
s
(
c
o
o
r
d
s
+
.
2
S
i
n
[
ω
t
]
d
i
s
p
l
a
c
e
m
e
n
t
s
〚
m
o
d
e
〛
)
,
S
p
h
e
r
i
c
a
l
R
e
g
i
o
n
S
p
h
e
r
e
[
{
0
,
0
,
0
}
,
2
]
,
V
i
e
w
V
e
r
t
i
c
a
l
D
y
n
a
m
i
c
[
v
v
]
,
V
i
e
w
P
o
i
n
t
D
y
n
a
m
i
c
[
v
p
]
]
I
n
[
8
]
:
=
a
n
i
m
a
t
i
o
n
[
m
o
d
e
_
]
:
=
L
i
s
t
A
n
i
m
a
t
e
[
T
a
b
l
e
[
m
o
l
P
l
o
t
3
D
[
ω
t
,
m
o
d
e
]
,
{
ω
t
,
0
,
2
π
,
.
1
}
]
,
A
n
i
m
a
t
i
o
n
R
a
t
e
2
0
0
f
r
e
q
u
e
n
c
i
e
s
〚
m
o
d
e
〛
/
M
a
x
[
f
r
e
q
u
e
n
c
i
e
s
]
]
I
n
[
9
]
:
=
a
n
i
m
a
t
i
o
n
[
2
]
O
u
t
[
9
]
=
"
"