Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CodeEquivalenceUtilities
Guides
Code Equivalence Utilities
Tech Notes
Adding New Transformation Rules
Symbols
CodeEquivalentQ
EquivalenceTestData
FromCanonicalForm
MakeCanonicalForm
ToCanonicalForm
Wolfram`CodeEquivalenceUtilities`
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
e
x
p
r
]
t
r
a
n
s
f
o
r
m
s
e
x
p
r
i
n
t
o
a
c
a
n
o
n
i
c
a
l
r
e
p
r
e
s
e
n
t
a
t
i
o
n
w
i
t
h
o
u
t
e
v
a
l
u
a
t
i
n
g
e
x
p
r
.
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
e
x
p
r
,
w
r
a
p
p
e
r
]
w
r
a
p
s
t
h
e
r
e
s
u
l
t
i
n
w
r
a
p
p
e
r
.
D
e
t
a
i
l
s
Examples
(
4
)
Basic Examples
(
2
)
Get the canonical form of an expression:
I
n
[
1
]
:
=
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
R
a
n
g
e
[
5
]
]
O
u
t
[
1
]
=
T
a
b
l
e
S
1
∷
,
S
1
∷
,
1
,
5
,
1
I
n
[
2
]
:
=
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
A
r
r
a
y
[
R
a
n
g
e
,
1
0
]
]
O
u
t
[
2
]
=
T
a
b
l
e
T
a
b
l
e
S
1
∷
,
S
1
∷
,
1
,
S
2
∷
,
1
,
S
2
∷
,
1
,
1
0
,
1
I
n
[
3
]
:
=
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
R
a
n
d
o
m
I
n
t
e
g
e
r
/
@
R
a
n
g
e
[
5
]
]
O
u
t
[
3
]
=
T
a
b
l
e
ℛ
D
i
s
c
r
e
t
e
U
n
i
f
o
r
m
D
i
s
t
r
i
b
u
t
i
o
n
0
,
S
1
∷
,
S
1
∷
,
1
,
5
,
1
Specify a wrapper:
I
n
[
1
]
:
=
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
R
a
n
g
e
[
5
]
,
H
o
l
d
C
o
m
p
l
e
t
e
]
O
u
t
[
1
]
=
H
o
l
d
C
o
m
p
l
e
t
e
T
a
b
l
e
S
1
∷
,
S
1
∷
,
1
,
5
,
1
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
2
)
S
e
e
A
l
s
o
T
o
C
a
n
o
n
i
c
a
l
F
o
r
m
▪
C
o
d
e
E
q
u
i
v
a
l
e
n
t
Q
▪
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
D
a
t
a
"
"