Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CodeEquivalenceUtilities

Guides

  • Code Equivalence Utilities

Tech Notes

  • Adding New Transformation Rules

Symbols

  • CodeEquivalentQ
  • EquivalenceTestData
  • FromCanonicalForm
  • MakeCanonicalForm
  • ToCanonicalForm
  • TransformHold
  • TransformRelease
  • $AllowedEvaluationPatterns
Wolfram`CodeEquivalenceUtilities`
ToCanonicalForm
​
ToCanonicalForm
[expr]
transforms
expr
into a canonical representation.
​
Examples  
(3)
Basic Examples  
(1)
Get the canonical form of an expression:
In[1]:=
ToCanonicalForm
[HoldForm[Range[5]]]
Out[1]=
Table
S1∷
,
S1∷
,1,5,1
In[2]:=
ToCanonicalForm
[HoldForm[Array[Range,10]]]
Out[2]=
TableTable
S1∷
,
S1∷
,1,
S2∷
,1,
S2∷
,1,10,1
In[3]:=
ToCanonicalForm
[HoldForm[RandomInteger/@Range[5]]]
Out[3]=
Table
ℛ
DiscreteUniformDistribution0,
S1∷
,
S1∷
,1,5,1
Properties & Relations  
(2)

SeeAlso
MakeCanonicalForm
 
▪
CodeEquivalentQ
 
▪
EquivalenceTestData
RelatedGuides
▪
Code Equivalence Utilities
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com