Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CodeEquivalenceUtilities
Guides
Code Equivalence Utilities
Tech Notes
Adding New Transformation Rules
Symbols
CodeEquivalentQ
EquivalenceTestData
FromCanonicalForm
MakeCanonicalForm
ToCanonicalForm
TransformHold
TransformRelease
$AllowedEvaluationPatterns
Wolfram`CodeEquivalenceUtilities`
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
D
a
t
a
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
D
a
t
a
[
e
x
p
r
1
,
e
x
p
r
2
]
t
e
s
t
s
e
x
p
r
1
a
n
d
e
x
p
r
2
f
o
r
c
o
d
e
e
q
u
i
v
a
l
e
n
c
e
a
n
d
g
i
v
e
s
a
n
a
s
s
o
c
i
a
t
i
o
n
c
o
n
t
a
i
n
i
n
g
i
n
f
o
r
m
a
t
i
o
n
a
b
o
u
t
h
o
w
r
e
s
u
l
t
s
w
e
r
e
o
b
t
a
i
n
e
d
.
Examples
(
2
)
Basic Examples
(
1
)
Use
C
o
d
e
E
q
u
i
v
a
l
e
n
t
Q
to check if two expressions are equivalent:
I
n
[
1
]
:
=
C
o
d
e
E
q
u
i
v
a
l
e
n
t
Q
[
R
a
n
d
o
m
I
n
t
e
g
e
r
/
@
R
a
n
g
e
[
5
]
,
A
r
r
a
y
[
R
a
n
d
o
m
I
n
t
e
g
e
r
,
5
]
]
O
u
t
[
1
]
=
T
r
u
e
Get additional information about the equivalence test:
I
n
[
2
]
:
=
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
D
a
t
a
[
R
a
n
d
o
m
I
n
t
e
g
e
r
/
@
R
a
n
g
e
[
5
]
,
A
r
r
a
y
[
R
a
n
d
o
m
I
n
t
e
g
e
r
,
5
]
]
O
u
t
[
2
]
=
T
i
m
i
n
g
S
a
m
e
Q
0
.
×
-
8
1
0
,
T
o
C
a
n
o
n
i
c
a
l
F
o
r
m
1
1
.
2
4
7
9
9
6
1
,
T
o
C
a
n
o
n
i
c
a
l
F
o
r
m
2
2
.
0
6
6
9
7
4
9
,
S
a
m
e
Q
F
a
l
s
e
,
C
a
n
o
n
i
c
a
l
F
o
r
m
s
1
H
o
l
d
C
o
m
p
l
e
t
e
T
a
b
l
e
ℛ
D
i
s
c
r
e
t
e
U
n
i
f
o
r
m
D
i
s
t
r
i
b
u
t
i
o
n
0
,
S
1
∷
,
S
1
∷
,
1
,
5
,
1
,
2
H
o
l
d
C
o
m
p
l
e
t
e
T
a
b
l
e
ℛ
D
i
s
c
r
e
t
e
U
n
i
f
o
r
m
D
i
s
t
r
i
b
u
t
i
o
n
0
,
S
1
∷
,
S
1
∷
,
1
,
5
,
1
,
C
a
n
o
n
i
c
a
l
E
q
u
i
v
a
l
e
n
t
Q
T
r
u
e
,
E
q
u
i
v
a
l
e
n
t
Q
T
r
u
e
P
r
o
p
e
r
t
i
e
s
&
R
e
l
a
t
i
o
n
s
(
1
)
S
e
e
A
l
s
o
C
o
d
e
E
q
u
i
v
a
l
e
n
t
Q
▪
T
o
C
a
n
o
n
i
c
a
l
F
o
r
m
▪
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
C
o
d
e
E
q
u
i
v
a
l
e
n
c
e
U
t
i
l
i
t
i
e
s
"
"