Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CodeEquivalenceUtilities
Guides
Code Equivalence Utilities
Tech Notes
Adding New Transformation Rules
Symbols
CodeEquivalentQ
EquivalenceTestData
FromCanonicalForm
MakeCanonicalForm
ToCanonicalForm
Wolfram`CodeEquivalenceUtilities`
F
r
o
m
C
a
n
o
n
i
c
a
l
F
o
r
m
F
r
o
m
C
a
n
o
n
i
c
a
l
F
o
r
m
[
e
x
p
r
]
c
o
n
v
e
r
t
s
t
h
e
c
a
n
o
n
i
c
a
l
f
o
r
m
e
x
p
r
e
s
s
i
o
n
e
x
p
r
i
n
t
o
a
n
o
r
m
a
l
e
x
p
r
e
s
s
i
o
n
.
D
e
t
a
i
l
s
Examples
(
1
)
Basic Examples
(
1
)
Convert an expression into its canonical form using
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
:
I
n
[
1
]
:
=
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
[
R
a
n
d
o
m
I
n
t
e
g
e
r
/
@
R
a
n
g
e
[
5
]
]
O
u
t
[
1
]
=
T
a
b
l
e
ℛ
D
i
s
c
r
e
t
e
U
n
i
f
o
r
m
D
i
s
t
r
i
b
u
t
i
o
n
0
,
S
1
∷
,
S
1
∷
,
1
,
5
,
1
Convert it into a normal expression:
I
n
[
2
]
:
=
F
r
o
m
C
a
n
o
n
i
c
a
l
F
o
r
m
[
%
]
O
u
t
[
2
]
=
T
a
b
l
e
[
R
a
n
d
o
m
V
a
r
i
a
t
e
[
D
i
s
c
r
e
t
e
U
n
i
f
o
r
m
D
i
s
t
r
i
b
u
t
i
o
n
[
{
0
,
S
1
}
]
]
,
{
S
1
,
1
,
5
,
1
}
]
I
n
[
3
]
:
=
R
e
l
e
a
s
e
H
o
l
d
[
%
]
O
u
t
[
3
]
=
{
0
,
0
,
1
,
0
,
2
}
S
e
e
A
l
s
o
T
o
C
a
n
o
n
i
c
a
l
F
o
r
m
▪
M
a
k
e
C
a
n
o
n
i
c
a
l
F
o
r
m
▪
C
o
d
e
E
q
u
i
v
a
l
e
n
t
Q
▪
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
D
a
t
a
"
"