Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
MoleculeComplex
Guides
MoleculeComplex
Symbols
Packmol
FindCoordinationBonds
FindHydrogenBonds
MakeMolecule3D
MoleculeComplexAngle
MoleculeComplexAppend
MoleculeComplexDelete
MoleculeComplexDistance
MoleculeComplexEnergy
MoleculeComplexJoin
MoleculeComplex
MoleculeComplexOptimizeGeometry
MoleculeComplexPart
MoleculeComplexPlot3D
MoleculeComplexPosition
MoleculeComplexQ
MoleculeComplexToMolecule
Packmol
RandomRotationTransform
$MoleculeComplexVersion
RobertNachbar`MoleculeComplex`
F
i
n
d
C
o
o
r
d
i
n
a
t
i
o
n
B
o
n
d
s
F
i
n
d
C
o
o
r
d
i
n
a
t
i
o
n
B
o
n
d
s
[
m
]
r
e
t
u
r
n
s
a
l
i
s
t
p
a
i
r
s
o
f
a
t
o
m
i
n
d
i
c
e
s
{
c
I
n
d
e
x
,
a
I
n
d
e
x
}
w
h
e
r
e
c
I
n
d
e
x
i
s
t
h
e
c
a
t
i
o
n
a
t
o
m
a
n
d
a
I
n
d
e
x
i
s
t
h
e
a
n
i
o
n
o
r
l
o
n
e
p
a
i
r
d
o
n
o
r
a
t
o
m
i
n
d
e
x
.
I
f
m
i
s
a
m
o
l
e
c
u
l
e
,
t
h
e
n
t
h
e
i
n
d
i
c
e
s
a
r
e
i
n
t
e
g
e
r
s
.
I
f
m
i
s
a
m
o
l
e
c
u
l
e
c
o
m
p
l
e
x
,
t
h
e
n
c
I
n
d
e
x
a
n
d
a
I
n
d
e
x
a
r
e
e
a
c
h
p
a
i
r
s
{
m
o
l
I
n
d
e
x
,
a
t
m
I
n
d
e
x
}
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Build the molecule complex magnesium hexahydrate:
I
n
[
1
]
:
=
m
a
g
n
e
s
i
u
m
H
e
x
a
h
y
d
r
a
t
e
=
M
o
l
e
c
u
l
e
C
o
m
p
l
e
x
M
o
l
e
c
u
l
e
s
:
7
A
t
o
m
s
:
1
9
;
Find the coordination bonds:
I
n
[
2
]
:
=
c
B
o
n
d
s
=
F
i
n
d
C
o
o
r
d
i
n
a
t
i
o
n
B
o
n
d
s
[
m
a
g
n
e
s
i
u
m
H
e
x
a
h
y
d
r
a
t
e
]
O
u
t
[
2
]
=
{
{
{
1
,
1
}
,
{
2
,
1
}
}
,
{
{
1
,
1
}
,
{
3
,
1
}
}
,
{
{
1
,
1
}
,
{
4
,
1
}
}
,
{
{
1
,
1
}
,
{
5
,
1
}
}
,
{
{
1
,
1
}
,
{
6
,
1
}
}
,
{
{
1
,
1
}
,
{
7
,
1
}
}
}
Compute the coordination bond distances:
I
n
[
3
]
:
=
M
o
l
e
c
u
l
e
C
o
m
p
l
e
x
D
i
s
t
a
n
c
e
[
m
a
g
n
e
s
i
u
m
H
e
x
a
h
y
d
r
a
t
e
,
c
B
o
n
d
s
]
O
u
t
[
3
]
=
2
.
0
7
6
2
2
Å
,
2
.
0
7
6
2
2
Å
,
2
.
0
7
6
2
3
Å
,
2
.
0
7
6
2
2
Å
,
2
.
0
7
6
2
2
Å
,
2
.
0
7
6
2
2
Å
Display the coordination bonds:
I
n
[
4
]
:
=
M
o
l
e
c
u
l
e
C
o
m
p
l
e
x
P
l
o
t
3
D
[
m
a
g
n
e
s
i
u
m
H
e
x
a
h
y
d
r
a
t
e
,
"
I
n
c
l
u
d
e
C
o
o
r
d
i
n
a
t
i
o
n
B
o
n
d
s
"
A
l
l
]
O
u
t
[
4
]
=
S
e
e
A
l
s
o
F
i
n
d
H
y
d
r
o
g
e
n
B
o
n
d
s
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
o
l
e
c
u
l
e
C
o
m
p
l
e
x
"
"