Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

CompartmentalModeling

Guides

  • Compartmental Modeling

Tech Notes

  • Vertical Transmission Models

Symbols

  • DynamicTransmissionModel
  • ForceOfInfection
  • Incidence
  • NextGenerationMatrix
  • CollectModel
  • CompartmentalModelGraph
  • CompetitiveInhibitorKinetics
  • DefinePropensityFunction
  • DeriveTransitions
  • DynamicTransmissionModel
  • EnzymeReaction
  • EpidemiologyModelData
  • EpidemiologyModel
  • ExpandModel
  • ForceOfInfection
  • HillKinetics
  • Incidence
  • KineticCompartmentalModel
  • KineticReactionNetworkModel
  • MichaelisMentenKinetics
  • NextGenerationMatrix
  • NoncompetitiveInhibitorKinetics
  • NullCompartment
  • ResolveCompartmentalModel
  • StochasticSolve
  • StoichiometryTable
  • StratifyModel
  • Transition
  • UncompetitiveInhibitorKinetics
  • VitalDemographicsModel
  • $C
  • $CompartmentalModelingVersion
  • $EpidemiologyColor
  • $EpidemiologyModelingVersion
  • $R
  • $SystemsBiologyModelingVersion
RobertNachbar`CompartmentalModeling`
StoichiometryTable
​
StoichiometryTable
[modelData]
gives a formatted table of the stoichiometric information about the transitions in the
modelData
Association
.
​
Examples  
(1)
Basic Examples  
(1)
Define a model:
In[1]:=
model=​​+ℬ
k
1
⇌
k
2
,​​
k
3
→
2ℬ​​;
Compute the model data:
In[2]:=
modelData=
KineticCompartmentalModel
[model,t];
Display the stoichiometry table:
In[3]:=
StoichiometryTable
[modelData]
Out[3]=
Stoichiometry
Transition

ℬ

Rate

k
3
→
2ℬ
-1
2
0
k
3
[t]
+ℬ
k
1
→

-1
-1
1
k
1
[t]ℬ[t]

k
2
→
+ℬ
1
1
-1
k
2
[t]
RelatedGuides
▪
Compartmental Modeling
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com