Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
CompartmentalModeling
Guides
Compartmental Modeling
Tech Notes
Vertical Transmission Models
Symbols
DynamicTransmissionModel
ForceOfInfection
Incidence
NextGenerationMatrix
CollectModel
CompartmentalModelGraph
CompetitiveInhibitorKinetics
DefinePropensityFunction
DeriveTransitions
DynamicTransmissionModel
EnzymeReaction
EpidemiologyModelData
EpidemiologyModel
ExpandModel
ForceOfInfection
HillKinetics
Incidence
KineticCompartmentalModel
KineticReactionNetworkModel
MichaelisMentenKinetics
NextGenerationMatrix
NoncompetitiveInhibitorKinetics
NullCompartment
ResolveCompartmentalModel
StochasticSolve
StoichiometryTable
StratifyModel
Transition
UncompetitiveInhibitorKinetics
VitalDemographicsModel
$C
$CompartmentalModelingVersion
$EpidemiologyColor
$EpidemiologyModelingVersion
$R
$SystemsBiologyModelingVersion
RobertNachbar`CompartmentalModeling`
$
C
o
m
p
a
r
t
m
e
n
t
a
l
M
o
d
e
l
i
n
g
V
e
r
s
i
o
n
$
C
o
m
p
a
r
t
m
e
n
t
a
l
M
o
d
e
l
i
n
g
V
e
r
s
i
o
n
i
s
a
s
t
r
i
n
g
t
h
a
t
g
i
v
e
s
t
h
e
v
e
r
s
i
o
n
o
f
t
h
e
C
o
m
p
a
r
t
m
e
n
t
a
l
M
o
d
e
l
i
n
g
p
a
c
k
a
g
e
y
o
u
h
a
v
e
l
o
a
d
e
d
.
Examples
(
1
)
Basic Examples
(
1
)
Show the version of the loaded package:
I
n
[
1
]
:
=
$
C
o
m
p
a
r
t
m
e
n
t
a
l
M
o
d
e
l
i
n
g
V
e
r
s
i
o
n
O
u
t
[
1
]
=
1
.
1
1
.
3
(
D
e
c
e
m
b
e
r
1
4
,
2
0
2
4
)
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
C
o
m
p
a
r
t
m
e
n
t
a
l
M
o
d
e
l
i
n
g
"
"