Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Combinatorics

Tutorials

  • Combinatorics
  • Combinatorics-1
  • Combinatorics-2

Guides

  • Combinatorics
  • Functions I understand in combinatorics

Tech Notes

  • Combinatorics

Symbols

  • CanonicalMultiset
  • CentralBinomialCoefficient
  • ConjugatePartition
  • DescendingSublists
  • DivisorHasseDiagram
  • DominatingIntegerPartitionQ
  • DurfeeSquare
  • EnumerateMultisetPartialDerangements
  • EulerianCatalanNumber
  • EulerianNumber
  • EulerianNumberOfTheSecondKind
  • FerrersDiagram
  • Fibbinary
  • FibonacciEncode
  • FindAscentElements
  • FindAscentPositions
  • FrobeniusSymbolFromPartition
  • FromInversionVector
  • FromPartitionPlusNotation
  • FromPartitionSuperscriptNotation
  • GaussFactorial
  • GrayCode
  • HasseDiagram
  • HookLengths
  • HuffmanCodeWords
  • HuffmanDecode
  • HuffmanEncode
  • IntegerPartitionQ
  • InverseFibonacci
  • InverseGrayCode
  • InversionCount
  • InversionVectorQ
  • LehmerCodeFromPermutation
  • LucasNumberU1
  • LucasNumberV2
  • ModifiedCentralBinomialCoefficient
  • Multichoose
  • MultisetAssociation
  • MultisetPartialDerangements
  • MultisetStrictDescentElements
  • MultisetStrictDescents
  • NarayanaNumber
  • NextPermutation
  • NumberOfTableaux
  • OrderedTupleFromIndex
  • OrderedTupleIndex
  • OrderlessCombinations
  • OrderlessCombinationsOfUnmarkedElements
  • PartialOrderGraphQ
  • PartitionCrank
  • PartitionFromFrobeniusSymbol
  • PartitionPlusNotation
  • PartitionRank
  • PartitionSuperscriptNotation
  • PermutationAscents
  • PermutationCountByInversions
  • PermutationDescents
  • PermutationFromIndex
  • PermutationGraph
  • PermutationIndex
  • PermutationMajorIndex
  • PermutationToTableaux
  • Phitorial
  • PosetQ
  • PosetToTableau
  • Primorial
  • QExponential
  • QMultinomial
  • RandomYoungTableau
  • RationalNumberRepeatingDecimalPeriod
  • ReflexiveGraphQ
  • SecantNumber
  • SelectPermutations
  • SelectSubsets
  • SelectTuples
  • SelfConjugatePartitionQ
  • SignedLahNumber
  • StandardYoungTableaux
  • StrictIntegerPartitions
  • SubsetFromIndex
  • SubsetIndex
  • TableauQ
  • TableauToPoset
  • TableauxToPermutation
  • TangentNumber
  • ToInversionVector
  • TransitiveGraphQ
  • TransposeTableau
  • TupleFromIndex
  • TupleIndex
  • UnsignedLahNumber
  • YoungDiagram
  • ZeckendorfRepresentation
PeterBurbery`Combinatorics`
SelfConjugatePartitionQ
​
SelfConjugatePartitionQ
[partition]
returns
True
when partition is self-conjugate.
​
Examples  
(5)
Basic Examples  
(2)
A partition of 10 and its conjugate:
In[1]:=
p={6,3,1};​​cp=
ConjugatePartition
[p]
Out[1]=
{3,2,2,1,1,1}
This partition is not self-conjugate because it doesn't equal its conjugate.
In[2]:=
p===cp
Out[2]=
False
Use the function FerrersDiagram to show the Ferrers diagrams of the partition and its conjugate together:
In[3]:=

FerrersDiagram
[p],
FerrersDiagram
[cp]//Row[#,Spacer[10]]&
Out[3]=
●
●
●
●
●
●
●
●
●
​
​
​
●
​
​
​
​
​
●
●
●
●
●
​
●
●
​
●
​
​
●
​
​
●
​
​
​
Some partitions are self-conjugate:
In[1]:=
s={5,2,1,1,1};
In[2]:=
ConjugatePartition
[s]
Out[2]=
{5,2,1,1,1}
In[3]:=
s===
ConjugatePartition
[s]
Out[3]=
True
The partition is self-conjugate:
In[4]:=
SelfConjugatePartitionQ
[s]
Out[4]=
True
Find the total:
In[5]:=
Total[s]
Out[5]=
10
Find all integer partitions of 10:
In[6]:=
IntegerPartitions[10]
Out[6]=
{{10},{9,1},{8,2},{8,1,1},{7,3},{7,2,1},{7,1,1,1},{6,4},{6,3,1},{6,2,2},{6,2,1,1},{6,1,1,1,1},{5,5},{5,4,1},{5,3,2},{5,3,1,1},{5,2,2,1},{5,2,1,1,1},{5,1,1,1,1,1},{4,4,2},{4,4,1,1},{4,3,3},{4,3,2,1},{4,3,1,1,1},{4,2,2,2},{4,2,2,1,1},{4,2,1,1,1,1},{4,1,1,1,1,1,1},{3,3,3,1},{3,3,2,2},{3,3,2,1,1},{3,3,1,1,1,1},{3,2,2,2,1},{3,2,2,1,1,1},{3,2,1,1,1,1,1},{3,1,1,1,1,1,1,1},{2,2,2,2,2},{2,2,2,2,1,1},{2,2,2,1,1,1,1},{2,2,1,1,1,1,1,1},{2,1,1,1,1,1,1,1,1},{1,1,1,1,1,1,1,1,1,1}}
Select self conjugate partitions:
In[7]:=
Select
SelfConjugatePartitionQ
[IntegerPartitions[10]]
Out[7]=
{{5,2,1,1,1},{4,3,2,1}}
Using the function FerrersDiagram, verify that a self-conjugate partition has a symmetric Ferrers diagram:
In[8]:=
FerrersDiagram
[s]
Out[8]=
●
●
●
●
●
●
●
​
​
​
●
​
​
​
​
●
​
​
​
​
●
​
​
​
​
Verify that all the partitions selected are self-conjugate.
In[9]:=
AllTrue
SelfConjugatePartitionQ
Select
SelfConjugatePartitionQ
[IntegerPartitions[10]]
Out[9]=
True
Visualize them with Ferrers diagrams:
In[10]:=
FerrersDiagram
/@Select
SelfConjugatePartitionQ
[IntegerPartitions[10]]
Out[10]=

●
●
●
●
●
●
●
​
​
​
●
​
​
​
​
●
​
​
​
​
●
​
​
​
​
,
●
●
●
●
●
●
●
​
●
●
​
​
●
​
​
​

Applications  
(3)

SeeAlso
SymmetricMatrixQ
 
▪
Transpose
 
▪
ConjugatePartition
 
▪
TransposeTableau
RelatedGuides
▪
Combinatorics
RelatedLinks
▪
A000700
, Expansion of Product_{k>=0} (1 + x^(2k+1)); number of partitions of n into distinct odd parts; number of self-conjugate partitions; number of symmetric Ferrers graphs with n nodes. on OEIS
▪
A081362
Expansion of q^(1/24) * eta(q) / eta(q^2) in powers of q. on OEIS
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com