Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Combinatorics

Tutorials

  • Combinatorics
  • Combinatorics-1
  • Combinatorics-2

Guides

  • Combinatorics
  • Functions I understand in combinatorics

Tech Notes

  • Combinatorics

Symbols

  • CanonicalMultiset
  • CentralBinomialCoefficient
  • ConjugatePartition
  • DescendingSublists
  • DivisorHasseDiagram
  • DominatingIntegerPartitionQ
  • DurfeeSquare
  • EnumerateMultisetPartialDerangements
  • EulerianCatalanNumber
  • EulerianNumber
  • EulerianNumberOfTheSecondKind
  • FerrersDiagram
  • Fibbinary
  • FibonacciEncode
  • FindAscentElements
  • FindAscentPositions
  • FrobeniusSymbolFromPartition
  • FromInversionVector
  • FromPartitionPlusNotation
  • FromPartitionSuperscriptNotation
  • GaussFactorial
  • GrayCode
  • HasseDiagram
  • HookLengths
  • HuffmanCodeWords
  • HuffmanDecode
  • HuffmanEncode
  • IntegerPartitionQ
  • InverseFibonacci
  • InverseGrayCode
  • InversionCount
  • InversionVectorQ
  • LehmerCodeFromPermutation
  • LucasNumberU1
  • LucasNumberV2
  • ModifiedCentralBinomialCoefficient
  • Multichoose
  • MultisetAssociation
  • MultisetPartialDerangements
  • MultisetStrictDescentElements
  • MultisetStrictDescents
  • NarayanaNumber
  • NextPermutation
  • NumberOfTableaux
  • OrderedTupleFromIndex
  • OrderedTupleIndex
  • OrderlessCombinations
  • OrderlessCombinationsOfUnmarkedElements
  • PartialOrderGraphQ
  • PartitionCrank
  • PartitionFromFrobeniusSymbol
  • PartitionPlusNotation
  • PartitionRank
  • PartitionSuperscriptNotation
  • PermutationAscents
  • PermutationCountByInversions
  • PermutationDescents
  • PermutationFromIndex
  • PermutationGraph
  • PermutationIndex
  • PermutationMajorIndex
  • PermutationToTableaux
  • Phitorial
  • PosetQ
  • PosetToTableau
  • Primorial
  • QExponential
  • QMultinomial
  • RandomYoungTableau
  • RationalNumberRepeatingDecimalPeriod
  • ReflexiveGraphQ
  • SecantNumber
  • SelectPermutations
  • SelectSubsets
  • SelectTuples
  • SelfConjugatePartitionQ
  • SignedLahNumber
  • StandardYoungTableaux
  • StrictIntegerPartitions
  • SubsetFromIndex
  • SubsetIndex
  • TableauQ
  • TableauToPoset
  • TableauxToPermutation
  • TangentNumber
  • ToInversionVector
  • TransitiveGraphQ
  • TransposeTableau
  • TupleFromIndex
  • TupleIndex
  • UnsignedLahNumber
  • YoungDiagram
  • ZeckendorfRepresentation
PeterBurbery`Combinatorics`
Multichoose
​
Multichoose
[n,k]
represents
n
multichoose
k
.
​
Details and Options

Examples  
(10)
Basic Examples  
(6)
Evaluate numerically:
In[1]:=
Multichoose
[10,3]
Out[1]=
220
​
Construct Pascal's triangle:
In[1]:=
ColumnTable
Multichoose
[n,k],{n,0,5},{k,0,n},Center
Out[1]=
{1}
{1,1}
{1,2,3}
{1,3,6,10}
{1,4,10,20,35}
{1,5,15,35,70,126}
​
Plot over a subset of the reals as a function of its first parameter:
In[1]:=
Plot
Multichoose
[x,3],{x,-2,4}
Out[1]=
Plot over a subset of the reals as a function of its second parameter:
In[2]:=
Plot
Multichoose
[3,x],{x,-2,4}
Out[2]=
​
Plot over a subset of the complexes:
In[1]:=
Rasterize@ComplexPlot3D
Multichoose
[z,1/5],{z,-2-2I,2+2I},PlotLegendsAutomatic
Out[1]=
​
Series expansion at the origin:
In[1]:=
Series
Multichoose
x,
1
2
,{x,0,2}//FullSimplify
Out[1]=
2x-2Log[4]
2
x
+
3
O[x]
​
Series expansion at Infinity:
In[1]:=
Series
Multichoose
x,
1
2
,{x,∞,3}//FullSimplify
Out[1]=
2
x
π
-
1
x
4
π
+
3/2

1
x

64
π
+
5
5/2

1
x

512
π
+
7/2
O
1
x

In[2]:=
Series
Multichoose
x,
1
3
,{x,∞,3}//FullSimplify
Out[2]=
3
1/3
x
Gamma
1
3

-
2/3

1
x

3Gamma
1
3

+
10
8/3

1
x

729Gamma
1
3

+
19/6
O
1
x

Properties & Relations  
(2)

Neat Examples  
(2)

SeeAlso
OrderlessCombinations
 
▪
OrderlessCombinationsOfUnmarkedElements
RelatedGuides
▪
Combinatorics
▪
Functions I understand in combinatorics
RelatedLinks
▪
Multiset: Definition and Examples - Statistics How To
Multichoose — from Wolfram MathWorld
▪
combinatorics - Multichoosing (Stars and bars)
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com