Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Combinatorics

Tutorials

  • Combinatorics
  • Combinatorics-1
  • Combinatorics-2

Guides

  • Combinatorics
  • Functions I understand in combinatorics

Tech Notes

  • Combinatorics

Symbols

  • CanonicalMultiset
  • CentralBinomialCoefficient
  • ConjugatePartition
  • DescendingSublists
  • DivisorHasseDiagram
  • DominatingIntegerPartitionQ
  • DurfeeSquare
  • EnumerateMultisetPartialDerangements
  • EulerianCatalanNumber
  • EulerianNumber
  • EulerianNumberOfTheSecondKind
  • FerrersDiagram
  • Fibbinary
  • FibonacciEncode
  • FindAscentElements
  • FindAscentPositions
  • FrobeniusSymbolFromPartition
  • FromInversionVector
  • FromPartitionPlusNotation
  • FromPartitionSuperscriptNotation
  • GaussFactorial
  • GrayCode
  • HasseDiagram
  • HookLengths
  • HuffmanCodeWords
  • HuffmanDecode
  • HuffmanEncode
  • IntegerPartitionQ
  • InverseFibonacci
  • InverseGrayCode
  • InversionCount
  • InversionVectorQ
  • LehmerCodeFromPermutation
  • LucasNumberU1
  • LucasNumberV2
  • ModifiedCentralBinomialCoefficient
  • Multichoose
  • MultisetAssociation
  • MultisetPartialDerangements
  • MultisetStrictDescentElements
  • MultisetStrictDescents
  • NarayanaNumber
  • NextPermutation
  • NumberOfTableaux
  • OrderedTupleFromIndex
  • OrderedTupleIndex
  • OrderlessCombinations
  • OrderlessCombinationsOfUnmarkedElements
  • PartialOrderGraphQ
  • PartitionCrank
  • PartitionFromFrobeniusSymbol
  • PartitionPlusNotation
  • PartitionRank
  • PartitionSuperscriptNotation
  • PermutationAscents
  • PermutationCountByInversions
  • PermutationDescents
  • PermutationFromIndex
  • PermutationGraph
  • PermutationIndex
  • PermutationMajorIndex
  • PermutationToTableaux
  • Phitorial
  • PosetQ
  • PosetToTableau
  • Primorial
  • QExponential
  • QMultinomial
  • RandomYoungTableau
  • RationalNumberRepeatingDecimalPeriod
  • ReflexiveGraphQ
  • SecantNumber
  • SelectPermutations
  • SelectSubsets
  • SelectTuples
  • SelfConjugatePartitionQ
  • SignedLahNumber
  • StandardYoungTableaux
  • StrictIntegerPartitions
  • SubsetFromIndex
  • SubsetIndex
  • TableauQ
  • TableauToPoset
  • TableauxToPermutation
  • TangentNumber
  • ToInversionVector
  • TransitiveGraphQ
  • TransposeTableau
  • TupleFromIndex
  • TupleIndex
  • UnsignedLahNumber
  • YoungDiagram
  • ZeckendorfRepresentation
PeterBurbery`Combinatorics`
MultisetAssociation
​
MultisetAssociation
[multiset]
returns an association for
multiset
.
​
Examples  
(1)
Basic Examples  
(1)
Random multiset:
In[1]:=
randomMultiset=RandomChoice[{LightRed,LightGreen,LightBlue,LightPurple,LightOrange},30]
Out[1]=

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

An association for the multiset:
In[2]:=
Association[MapIndexed[Identity@@#2#1&,randomMultiset]]
Out[2]=
1
,2
,3
,4
,5
,6
,7
,8
,9
,10
,11
,12
,13
,14
,15
,16
,17
,18
,19
,20
,21
,22
,23
,24
,25
,26
,27
,28
,29
,30

In[3]:=
MultisetAssociation
[randomMultiset]
Out[3]=
1
,2
,3
,4
,5
,6
,7
,8
,9
,10
,11
,12
,13
,14
,15
,16
,17
,18
,19
,20
,21
,22
,23
,24
,25
,26
,27
,28
,29
,30

Sometimes we might want to count the elements of a multiset as unique, even if they have the same value like how 1 has LightBlue and 3 has LightBlue they are equivalent, but maybe we want to analyze their differences like how one is at position 1 and the other is at position 3. This is why this function MultisetAssociation is useful.
In[4]:=
Keys
MultisetAssociation
[randomMultiset]
Out[4]=
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}
Here is the canonical multiset.
In[5]:=
CanonicalMultiset
[randomMultiset]
Out[5]=
{1,1,1,2,2,2,1,4,4,5,1,2,4,4,4,4,4,4,3,2,2,2,1,3,2,2,3,5,1,4}
SeeAlso
MapIndexed
RelatedGuides
▪
Combinatorics
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com