Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate a matrix that arises in the computation of the discrete Hilbert transform
ResourceFunction["DiscreteHilbertTransformMatrix"][n] returns an n×n Hilbert transform matrix. |
A 4×4 Hilbert transform matrix:
In[1]:= |
Out[1]= |
Visualize a Hilbert transform matrix of odd dimension:
In[2]:= |
Out[2]= |
By default, an exact matrix is computed:
In[3]:= |
Out[3]= |
Use machine precision:
In[4]:= |
Out[4]= |
Use arbitrary precision:
In[5]:= |
Out[5]= |
The Hilbert transform matrix is antisymmetric:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Compute the discrete Hilbert transform of a vector by multiplying it with the Hilbert transform matrix:
In[8]:= |
In[9]:= |
Out[9]= |
Using the resource function DiscreteHilbertTransform is faster:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License