Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the components of the Ricci curvature for a metric
ResourceFunction["RicciCurvature"][m,{u,v}] computes the components of the Ricci curvature for a metric. |
The monkey saddle surface:
In[1]:= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot the surface:
In[3]:= | ![]() |
Out[3]= | ![]() |
The covariant basis:
In[4]:= | ![]() |
Out[4]= | ![]() |
The metric tensor:
In[5]:= | ![]() |
Out[5]= | ![]() |
The Ricci curvature:
In[6]:= | ![]() |
Out[6]= | ![]() |
Alternatively, Ricci curvature can be computed contracting an index of the Riemann tensor. Compute the same tensor as above:
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
The same result is found using the resource functions ArrayContract and RiemannTensor:
In[9]:= | ![]() |
Out[9]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License