Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Construct a specified Kimberling center of a triangle
ResourceFunction["KimberlingCenter"][tri,n] returns the nth Kimberling triangle center of a triangle tri. |
X1 | 1 | incenter I |
X2 | 2 | centroid G |
X3 | 3 | circumcenter O |
X4 | 4 | orthocenter H |
X5 | 5 | nine-point center N |
X6 | 6 | symmedian K |
X7 | 7 | Gergonne Ge |
X8 | 8 | Nagel Na |
X9 | 9 | mittenpunkt M |
X10 | 10 | Spieker Sp |
X11 | 11 | Feuerbach F |
X13 | 13 | Fermat X |
Find the incenter, X1 or I, where the angle bisectors intersect:
In[1]:= |
Out[2]= |
Show it:
In[3]:= |
Out[3]= |
Find the centroid, X2 or G, where the angle medians intersect:
In[4]:= |
Out[5]= |
Show it:
In[6]:= |
Out[6]= |
This is equivalent to the result of TriangleCenter or Mean:
In[7]:= |
Out[8]= |
Find the circumcenter, X3 or O, where the perpendicular bisectors intersect:
In[9]:= |
Out[10]= |
Show it:
In[11]:= |
Out[11]= |
Equivalent ways to compute the circumcenter:
In[12]:= |
Out[13]= |
Find the orthocenter, X4 or H, where the altitudes intersect:
In[14]:= |
Out[15]= |
Show it:
In[16]:= |
Out[16]= |
Equivalent ways to compute the orthocenter:
In[17]:= |
Out[17]= |
Find the Spieker point X10 of a triangle:
In[18]:= |
Out[18]= |
The Euler infinity point, X30, is not currently supported by KimberlingCenter. Find and show the first 29 Kimberling centers:
In[19]:= |
Out[20]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License