Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the bialternate product of two square matrices
ResourceFunction["BialternateProduct"][m1,m2] constructs the bialternate product of the square matrices m1 and m2. |
Compute the bialternate product of two symbolic 3×3 matrices:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compute the bialternate product of two exact matrices:
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the bialternate product of two numerical matrices:
In[3]:= | ![]() |
Out[5]= | ![]() |
The bialternate product is multilinear (linear in each argument):
In[6]:= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
In[8]:= | ![]() |
Out[8]= | ![]() |
The bialternate product is commutative:
In[9]:= | ![]() |
Out[9]= | ![]() |
Transposition distributes over the bialternate product:
In[10]:= | ![]() |
Out[12]= | ![]() |
The eigenvalues of the bialternate product of a matrix with itself are the products of the eigenvalues of the original matrix, taken in pairs:
In[13]:= | ![]() |
In[14]:= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
The bialternate product of a matrix with twice the identity matrix of the same dimension is the bialternate sum of a matrix:
In[16]:= | ![]() |
In[17]:= | ![]() |
Out[18]= | ![]() |
The eigenvalues of the bialternate sum are the sums of the eigenvalues of the original matrix, taken in pairs:
In[19]:= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License