Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Calculate the bialternate product of two square matrices
ResourceFunction["BialternateProduct"][m1,m2] constructs the bialternate product of the square matrices m1 and m2. |
Compute the bialternate product of two symbolic 3×3 matrices:
In[1]:= |
Out[1]= |
Compute the bialternate product of two exact matrices:
In[2]:= |
Out[2]= |
Compute the bialternate product of two numerical matrices:
In[3]:= |
Out[5]= |
The bialternate product is multilinear (linear in each argument):
In[6]:= |
In[7]:= |
Out[7]= |
In[8]:= |
Out[8]= |
The bialternate product is commutative:
In[9]:= |
Out[9]= |
Transposition distributes over the bialternate product:
In[10]:= |
Out[12]= |
The eigenvalues of the bialternate product of a matrix with itself are the products of the eigenvalues of the original matrix, taken in pairs:
In[13]:= |
In[14]:= |
In[15]:= |
Out[15]= |
The bialternate product of a matrix with twice the identity matrix of the same dimension is the bialternate sum of a matrix:
In[16]:= |
In[17]:= |
Out[18]= |
The eigenvalues of the bialternate sum are the sums of the eigenvalues of the original matrix, taken in pairs:
In[19]:= |
In[20]:= |
Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License