Function Repository Resource:

MultiPerspectiveEmbeddingViewer

Source Notebook

Visualize a MultiPerspectiveEmbedding

Contributed by: Nikolay Murzin

ResourceFunction["MultiPerspectiveEmbeddingViewer"][mpse]

creates dynamic controls for viewing MultiPerspectiveEmbedding results.

Details and Options

The mpse is an Association obtained from the MultiPerspectiveEmbedding resource function.
ResourceFunction["MultiPerspectiveEmbeddingViewer"] accepts the following options:
"DisplayFunction"Automatica function that displays the result; can be any custom Function that takes as input a sequence of options to control 3D view such as ViewAngle,ViewVector,ViewVertical and ViewProjection
"StartingViewDistance"3distance between the camera and the center
"ViewDistanceRange"{0.01,25}range of distances for the slider

Examples

Basic Examples (2) 

View the result of the MultiPerspectiveEmbedding algorithm using default Graphics3D:

In[1]:=
pointMPSE = <|"Embedding" -> CompressedData["
1:eJwtW3dAT/v7P7LJKmQ79kwykn3sPTOzjqJyL4XyNeNklEtUVFblIDMtKqty
hJIkGZWsQylJQsis38/r5f5xj88Z7/GM1/N6nvdTKxunqYsNBEG4/v//qyjg
P3lho8zBf/5Rr8jn6v9ftAafHvz5rY8/j6uUNPbcn/tqepeMP781yenWn99i
/V5hf37Ln+Ie477b8K1/7gsWQZf+/FZ7xNzDczOPzRivNDXuz1W03HwP3x/e
k4Dfsk3Un6tSvAPva7enxuCq9MV65JCnj7Cuj2EKfrdRr+B9iz3pf35Lm8Kx
Tvl50dE/v5X8kalYr+GQ25j3+O6j2MfvzVi/9Ng3Guus3S0ez+0m4L464uce
jBPnifGFjq9VXL+1uIH3v1XBvmTTjVl4v3OXAPw+ZIX1yhc2YZ16o833Me6q
r37Yh2EPzrs+pT3eOxwHOWiTX2D/gjDzIZ5XrqZiHrsY6EM6cOc0np/2icZ4
bX/cx/OcAZCT+qpPMuRQWjsF41p6YL3ioPQLeD/7HfQi2pSn4fkl81MYr6Bj
Nq7RVpfx/drTERgvxBHr1hyWXsS1wmrMKz+Ymg05H63thP21d8d+lbG/uZ4T
P2IxXqMDibgah0O+yo7yk/g+++p5vL90agb00jIa74nbrl6EHYQuuotxc65s
gZ4NMyjP5zshbz3Y5ADWlzMG61T2Gj+FHby6Cf2JSaaYRxua8ADzPpEeYR2Z
zoewvnU20Jd08B2/t/Q6jufvw2C/4siLtOdPpVfx+8AgfK+5m57BOtYNScBz
2zGwW62xJZ4ryctHY91PllMf1+y88Xy9Vyyu7jG0c9+psAPFOeA6rpO3QO7y
l6ap2F9/pxOY9+IkjCu7DIY/SEunHcZz14lZ2NeVDNiNGuF5BO9ndcJ92fgi
/aay0wn8XtsDetH3f9Ro30NuYrxz6+9i/u8B0IfWbDve10zt4UfC5XPX8Dx/
+D7c/yZhHM3veyjGOTeEenchXiihffdi3HoFtLdKXbAOaVO1WxjffEIUxv0h
YnwlLQfzqrbx0JvSojvsUDH/bxH1F0/cuFJ8B/b2a0wwnheZYB9qi5EYR6sp
QD5q98pXsE+rfpCzkJK4A3qdXhn+qyXZ87uXZrA3dfg8XJWmeZC7tswL+1Ez
1oRiviHl2IfiuScZ80w9y+8bvyUOLg+EHylfjtEev9NOlJ4nvTBvuDHkJ0cs
hLzl40XwR93tH+CQfKEx8EHxHAU8Up8VUg9V1lE+xkPX4hpiD39SD82Dv4p3
i3FfkCK4r5Av8FPVtzXsUwzIJB5mlNG/8p4exn7Se2v4HTGRcvuxCPYvPv6J
9enz2t2EvdSqT716/Q7EuHFPMI7+7+R0vH/fBu9rZWuIM63LzuH+b0PYozK9
BH4nrh+E9/XS3E14bnYev7Wf3SnHfwOgN62eHXBNeRkDO1He5Nrh+fQOkI/0
bhju697vMZ/exPkk1vkxFOOpuXsCII8GUWm4rndYjHGqNQeeqhbusAfZucJu
rPf1HKxXcawXid99TZKgz9TRiFeaYSjWL036BvvTjF5zv797wJ6VkZOJa6tK
gBdS9r/AE7GwGexIeNgT42vO/ox351cRb7N70b/T9t/B9W7EHKxvQ+N4yGuO
NeftNZ7fGftB3/q+2RhfObwD+tLjt8NfNIMM2JsY+Yjx4vuL41h/VBh/h0wH
buufK8FftUzamRyyLwj3NcY77b+KtIvTfeGf4ncd+Ka3XAJ5SmeMqPeqedCb
qK/HPqQh6xwg73VvaOflhoiLsvFjrEsdOIv8weUuvlcq/oA+pLggyEd13Ah7
FZI+YT1ycHvibcfajEcl44CPmokz8Fzt94D+9aY/5tOVRMQLNbwn4/6W7HC8
ZzcgktfawEP10XbgqWb94yzmn9aMfnf9LOKSZjMTuCF1qkz7GeqPdeinnYG3
SlIy5f7Axg3rqmkL/xDyquF9vaQJ4+We45hH2jkdOKnUGw8/VLUu9N/hYeux
z7ye4CVCxaPH8H5KSQrktrED4o4UZE0+kNYZcpMb9MP4cs428oN7m4knr3/i
O2XJcfiPNn8q5CYGph7DOD4BwE1hTxjkox6fA5wQ/x2IeKEHjubv3EnwK8FM
Y3wI6UQ7X3XnBsa1tIZ/6GoW4oXU/ib0oo/Ihx9oSiLeF9/25W8piv49NJ/r
b7WUflJ9DuKcZLF6OdZ1rcwHzzs4Uk5nJ53BuoNP004SVwB/pcv53F/nthhf
zngHeSoTVmH98j3zv3HypYLrAWvylqTb1HuYSn0NbA3/kO0KEef02LuX6ceL
8b2+tC3t6pId9iubeIHnygZBcyHn9fvxW7waAf2Kdl3gn2peZa4zajrigpj+
lPaXnE377bn0Mt7f7wq/lzvVpP+nG67C+Gl+xMnNucB19WNb+u+Ld9RLViD8
RI9g3NGbW8B+xNw9sH/N4Al5dNGBnXg//TD2pS2xjMO6jTeOxH5b9QKeSUap
DyH/ql8Zh8KtiaP2Boh7yqhdjI+WGfBLSQigfKUg2nH6AMYH4zn0r9nBGEcL
j+T4o4ZiPOnjo0g8931CeXskwA7lm0aQs7Tgixf0LaxFfBE6a97Yn89W8vbD
6xmPs4l/cmzKPernGvUzoB7jiYUXcS1/It4TiltxPxO3Ql/Kw1ji87xh8/H+
tKfkubv/Ad6pfgXYr/QpgLg+ZDz5eq0N5AdTpwB/JMsz0KviPof4/H4+5K/v
s6M8p44kzgf1x3PBrpIr9NRzehD23WUb7efDMcbnxqe5v7wp8Gflf6uvYb2L
orF/bf0+4JWsezL+TbpDfh+7FOuTvgw6i/EKominwabwGy3zHPOFBtvIa0bF
h2GfHncRX+Q2PYH3otEbyEHtMw3vi54XoSchPg961lc2AZ7IT7eTn8SNJv6M
N2d8HWWC73XPBczbMl5x3983Uo9px5Kg38rR1HvjEdiPMrcj8F/akhGC9U39
B/ignfzLKwZ2UWmvYeDl4u9a1pi/m4716y8diIf308lbLm08j/sDqhBHHD/h
vtC/NuQlXH2L+Cq1KSfv8Qwlv9r63Q1ykU4C7+WkDcxfQuPIMybN5TwujEfa
qtPQg7zzFfNFC/Jh4WQ0/XKC3U7M0zuQ/CdGpR8GH2A+VCkAcpY3W2F/itEl
4KRU4Id8UF7uCb/QjvwL3BDvP7LDeBfKgbuyOIt6dmqLfFZs60c9fg4EjxJm
NiL+zF4OPqrpIyAP2foD1/OuJnBFWRhmj+eTqtHOr44Cn9JCioFj2sLNjPO5
M2GPQtcW4AnCR3/m+5ZHgMdi/2POWI/pRur1RArj37QH+6EP5zLIT7o4FvIV
GvXA/tTPEyivlMmwc31eDHHC/CXWqy8TmJfMDSYOdDdAvJbHN+P6X/rAn/Sn
TbEecXfURjw/dR7+JC75BR4tFCjUV9Uj5JkDNjB/HnHRE/dfHcL+pOyG9F+n
lvBfNeAR1quevEJ8Kf8Fecjt9jL+GHZfje8WxK/FenM2MF9yqoR4rI6WyXdS
MuF3YqYL8yObLOaF/mmQp3RuCPOjKc7Qo1w/hvOkrMI+9fBO5NUffGBHYqd1
iNvS0hTy2mUvYN/SilDkXXrvL+e5r9/Afdl2P/alpv5dv1N38l33f5gXVLfH
92rdlohP6tp24MnqgLeIk3pHb8rt1sTr2O+4cOQ1yjtX8p3q1+nHZhxHXmbE
usqFlYzLCzMioD8hCDxC3TWHOPxRoZ3PWMC8bVMQ5KOtDD8CORbMI3/OdIR+
hZ92B7Aut9OwD/HtBNrtmevkTUYfmHcETyFPnTwZ+Zoc+ZP+O/oO6y3znbmf
693AM4Tyy8xr7O/DjrV13yA/6dNRrl98AXmrXT6y/nQmBesWHoYzD3Uhfmtu
dxmvKx1DfUSq1grrlF4dw31R/QUcVlZmAJfUwnvMz/vfw31xTD7rDjdbEWfM
rVH/kNs82I7vVtkx/n39iTqC3GM68ETbEUPeUv/FIXw/oTHsQo4aDLvTjsnY
l5o2mDiZceUx9Lh/OetvlxyBM4LxZ/iTJvyEfERJAm7rD2Ng17qPBe1QOo14
qTuYsO615Rz4ima6jXG/uiP0rNxj3ieMLIQ/SS57cBXGtYbfqzFl3tx/deLV
sl/AHfXqQQ+sz2IB6zLr98KutJglsGftyVfq+2lvf9pnA+CGlNkP8hNypsIO
5OrLWWcaP+MJ7G9XPHntrCG025HrgFN6cSL4t9xhBvxdudOQdZLtky/AbwVb
xA0tNYV8z9OMerOuvAbvp60mjjVevwnr6m5IXDS4Af1IresiPqv7rJint60P
e9DayVifkliOdWnZ74ljLvOJ87bTmJeorsy/8tNYVy17Avlobmfg19KTrcTJ
uIWUj08q85qZb8EvJVf3GZh/zgPmI85v3bH/6Q2Y9x+xpl98KtyF8aPHEGfm
dQUeCMnesCO5p9VVjJNZD/PqZ2Jp9wMW0w7XzIcchA8jYWfigK5bcb9La+K/
ewJwVu5ym/5nk0q+G9prN+R6bw39uterfbgOa/0U69wdQfk6hZIf9TlKf4yu
BjvXB5ajDqnEriHODvq6H/eXKPB/obYp171nN/n/gCbkhXW3Ej8qPYT8lYWR
sE9x+lvqP8ckGN8lds6if+cjXoulv6Npt3NZ3y7YB/tQ0hxYr762nf7b3Ij2
Pph2r/e9Q150d/kyvLdlK/l6dBD0JhU7Ao/kqsmwF92wHOuQJnjAnqTJbVA3
kts+pp5uDiQPsnuA+qI6sj55RYVljDOFVszHUgPAy6WheeCpwvg2wAm5bx7q
PNqjfeQvj8/DfpX5b5i313yCuo/WKYf5UJXBMXjefB7GUyumgf+pUSLkoNxs
QnwXTjC+7WzKekzkTdaPKpwl/uzyBU9Tzh7EOiRba+axDpOJE9PpD3LbF4wL
qdVgn8rlbcyXs+sjfun5XRlnjwSyzr+sKXik/JJxU/EMw3qEEW9YJ894SD83
/gQ8Ea+OQl1EaNEM3yttT8Lf9KYlsFvh/ArIR6zXmPsdcZT1Tot01mGKCzG+
WOyaQrudy/xn/AzWdQ1nkMfWNUd+K3ZvyHOFxlvBN5WfB1inzVLwvRayAX6s
esxl/eZDc+Cp8PUA9K9eGwY7F/baAH813zAnzJOQjjghTJ5Lvu+6gPWR+kPI
+w/bYXz17lzkhdq8isSfTs38Mf5Z47+8VON9YRzWr5vWR36l1m8D/JRueJMX
2TW4hPl3eaOuILv/j3b/Ion508vycLz/O531Awv6i9KG8VpRF0MOsuNO8C+9
RwLzqQP9n+Pabg/PJ8RAzC+sPkN+WJJCfK6tsb772Bf2JY9tT57ax/Q25t25
JgR6M2C9V7p/ADxZOpmIcxn9og4eI79+BhyTr5piHq2Sz998sSbwUXmyhvnV
+lzoXb0TzLyz/UDKtUBiXaHBDfrbxobkT0nbgENCkzfMsz58wXvK27Gso0//
CD4qdXlC3F4WPx72UEHj+YK2DP6o5jXHeYYS5sHzC8dPlIelO89NDGdhXrXu
V+hXuX2YfDdzIM85cvyZNxn1ZF7WeyP9bFMG4+55XaP+zcFjhFnbUSeXO7sR
/zeWc3zz56yTDp2O+UU5kvqwjQE/EO/N5vlHg0zy5xrPUO9T/ulHXuj/k/nH
sJE8N+qYAPlrF6ZgX4L/T/LrYwY4lxGbuhF/Uh3/wzhzHrP+H5aEeqTUJYZ8
Kecg8dy/KusSm+zJy7QE+lMg44tY/lcugzvDLpXf7zOhlx1p1GvRaubLng/4
e2hFysnkIPHuaBPyZEND5jW+AzGvtKQHeJQ+Ig71H61wNc9x7A6TNwbYAt+E
I1y/OKMe5hVmyohP6vIMzit3hF+Ls6+xvuXUFPsU+j9nvmP+F7cGu5DvJ7pA
zqLra+ollXVY4X99zvG7yayjP43chmtuOr4Xis8zvpa0YT6U/R/tse0y1uWM
d/LcrPwC7cVqJM8/V5bz3KZ0J/OMD7XAP8Vx6cxXTnQl3+jmxbxqFP1OXXuB
cXP0InyvXv/KdfrsZ11u43vki6L1Y9b5/GJ5flKf+aL8ppB56NqWPGesbsnz
tptH6U+KJeNOq0DyObOUROgpqhvWo75XmI9VTaSephYyXh5pxjgxN5T5R+42
1ot27OR5YJYDeWtmMOssuffBo8R1v4E7woV2HPfXLeQjYsx8nlvZuwA/ZWUA
+IA8/BD9OO4k1iOGjlyNdf7uiLijxLzDVe7jQ5zNqcs6iXyTeF4zk7x+ww/y
kg8K60putVDX1aJ78Tx72HrYp9L/MXlS2DTkC0LX7diPbj6E9eEJHlynGe1T
XbDoNfb7bvYrXMdMZB3i0yjW7bzfwP61Up5r6rfuLMM47U9gfUr8R55rRx5k
nnno6nasZ+lY1mUTuG7FZgWeCyEBkL/aTUbclB/JwAHx8F3Ys9K1Du1isSn8
Sz/6D/O+k03IB05nML/wb4P1SKdegJ+JfcJhD+rEAViPsCOZfKXeA/KJ3p1Y
fx02CfFd+mWF+CaOvAG717NzmM94PUccEpIfgTeqI3fzXNLaiXXzdW7AOaXN
OvB28cUd8FnVYh7iuFi/CPpXL87xw/2EOcSf7asxrxq7ELgrnPBlvev1QeCz
HOrJeuPnFNbdDvVDPiMeGgpcUZ6cYh540JR180lvWfds1p550zktF/volfGS
elKZ/13rjjqu1qU29qnkl4BXq4UG8FvJ2Bb2pn4+Svup0YlyTe/I819HL/iX
nJlPPrrEmPn1slk8n51RpOO5xzWe0+Se4Lr8N/PcYUUDyEV42pH+cvLqXswX
yPqxsvgWeKA0MQrvq9GNgf+SdyrXM7SM+ku8jzxPnPmZfrphRjD9pJi8PfcS
6lZqcQvG9/U6+dqkGrAvZfhcnrt/LgfvEpfF/j2vf3gKV5tjxJ+WTcmb0lzZ
D7Erjecbg9jfIt3ahPggxf1HXKi1A/rXXGcyjhXWxXiiPIl5+qyFPK/yWc54
nTWaeDWf5+NiIc/VpRlX/sV8lZxW4fnQqcT5aG/ECz2kIvxQrm+E+r/WYAD4
l9zlOHlgsgHP0Y7mmOO6hfgrfK2GeCucMyZfDUo5Dbk5TWcfweVdsEvx4hrI
QxfS3fF8aUvykCq1yauCdjGPyHdgfcP2J+3uneUWyMd3H+3+wF7Wiyrv53cf
0xgf2txFXqM9Y/1Pf+xJPfqYQ76qEkU+4FaV8W5MDutmk6YhL1QPGZLXtnZk
3XxZOP3E5ALsRO7QgXVP6Tnx3fAncFd2NyJvaLAadqSZsw9GmNsccpO2vWT+
O+YQ+3hqdaSdfQxm3bjVWNinJjZ6hveaRWGfgt1QnsfErdmDeSLGA1dV0wfM
76JP4r62eQLrIJ1bk6fsLiJut+4E3Ff/NWd+512FerQ35/3UNcg7lNWLJdy3
nA05SWPvM19wzgJfkyOcWdc+OH0n/bAv+KcSs4X5+bwxxOec31dp78k81z9y
BHYl/ljIvoIJSbTzdCvybsO1OH+UXSN4LtJlA/Pok81YfwsviaC8R7H+8PU2
8nQxwfcJ7nsNRrwUOjbkOVbMC+rZpBbP0RO2o59K8x5P+6zRifxnkSn5dunJ
+Rj3+W7m177TYD9inAXl06khz8G6d8a5rNBNZJ0lJpnnWO87oE9Fya+EPEAL
DUH8F+1jmXdUHcr3Sr3ZZ7Cb9SctPpfnaPs7sD5pe5S/993GfMrllqxPrhkM
XFX7zSavfdUW6xbyjvB85GQm+f30ObSDSaV+9GeNca3gIvIpfc9a1I+1K1PI
Wz0yUF9Qo5KJz1PvAec0483ke/3pB0KvmMnYn2Ms86sTkcQZt1PgA8KHLeQ/
/hOQD6mW7jwHCBpOHFi9kHlefjUX7LNoPe3WvQH94rcj87UIZ/ZfRT5F/Na/
OICvCdvGIh4oWT3B89VZ53HeLudlwa60YWWwN/1tGvSs2G0EL9O+JXGew170
o1JX/t65CPgo9rBlHVx4xjw46W/fjfTFgvMXQm6y9VbGxRNXWA9p8hn3hVbD
DmI9noNYH53cAnrXHv1APNXCQ5iPFReSz0f84Ll36jHWE9atIK5tSIec9XiR
536zEtjn4+hPfrf5HuxQ3HOCeZ8783cpdizzjohXrINtL0LdW1voh32IF0pZ
ZzlVhnilN7y6HleT/rB//fgF1t1TDLEfsact13nhxXLME/WI/r/RB/vQ7IYw
rlWqxr6HkweZX/Q5gnqvZCIwPp7dj/isDihnffl1RfZRpQiML3k6cE+OMSAv
82iM+rs4vzr5f0Xas/DoJessIRLj0XEj6m19MnmRhRnsVrghYd+C+Tzi+aC5
PMf0zWW/mZ8reLR2aR7tQr0xFfMdiSDf6zaUPKPzQYwrNR5NXicuY9wSIoiH
XyfRH270Q1+TfPgncexNY9TDlEE5wEPdLxLfyR+rI39Qq+UCx4Sbtxn3ayWz
rjNsDc/j2m9lnTgzGXxJ6+kL+ajjJMhHH38J+1drvGX+PFFPofyLeX797DHr
rF4WiNP6qY+Mm5Gr8jBe/7o52N+Icaz75m+3hxzGzmZedsYcPEIWY/G+8iUL
70sLm2F/8liddls2n9ecMcyfo0qZR0RbQX7S9RDGcbOB4PeawWzgqXR8I+NS
9cs8152ZyHhcIYh5T1k84qv0D/t1peffGUfyGrNe+/gJ5Km/XE7573/K8f57
TXneceY58izrDXgvMRL1a3liAfHhfVXgtehblfbwgHU6pYo/efvLdPAZucSJ
/HPaFNaxt+7sh9/ZPI8WbJ/yvPTsOehbd+xB/uY8n/0OWneea1f4Sj9c5EHc
nnqX+bhLO+YdAc0gXzFmCOpP0ulJrGPF9oHcdIMliP9yu9OIG8IWB9iRXOs1
6+hTv5Fvq4HgP1JlQ+5r1GTgsZLdk/UA96Ps97DOYr9WejXKd35j9m++7ks/
Ld8F+xL6LiAOG7HfSEk8xzqm+0zifKIr9RL7H+P+xorAXfGfx8A9dZ1CeQh7
2Z+StJq/O9UhH88wRn1CXxhF3Lv0hXm66V7a9cwSxsHHt6E/pcp91HGFs8zT
1E+jGA8TI3H+KaXZER9yP/O8z+QQef7kJ8x/J85m/dc9hv2Nw1syj3jXl/O8
/OAL+Z3vxt8Vglwx3mxH2s2jquR73YMgZ6XmKvYhiC7M/6wbk19f7wkeIk+c
SLkPG8U+tnGPiWvtuvF+eD3W+c92gr2o9QuI82WezHuV3ZR3m2Tk80LlG+CJ
kmNt5n/Xv7KuP+YvP2lTB/U6cSF5qVa3F3lQ1RDm7RWOMY+o4At+pUZQz+qL
EvapTrxCvUwfCj0Kv+tQni5hrAdlDic/be/PfrN+SzGOcOUl+7vjbxEH9hxE
3NfTHWCfWtuPzOcP5qGPWu+5mv27fdwgV2lRPvu5IgbAvpWOrVj3K/vLM91H
8Nyrcz/2+XTpxzpVlwI8VzdbsE5Z+pznYnNNWXevlMD40fs/X4x7o4D9DB4y
x9nYBPivj2/HemllA+xH+7cN8lLZrZT9CrGHmV9PCmB9foAlxpOHzEHclMW6
rAvJvWdj3g88h9RcRMp1uAf7BGayH0i6uIP6XWoN/YrzBgKnpYtJ3GeNduDT
uk0u6xF1vKB3/WGvQLz34xTr3mWrUD8Rmrgi71YT3t6gHxhCf8rai+zTyEtn
HaBJJ+r35QDwOj1mBf0o8hjrK8EHeA7f1YJ1qD4C4oAyryL778Z3obwOur7A
/o2Lea58vxvPlVsNIx5n9WAe7co+P+VzAvJ0Jb2E+f05P8aJvc7Mg/1Xp9IP
2G+mL3mE/FSY1ZHnBj33I28RYxyxTy15JfxMb7cS9iKOu00cyXrA+kqDueS3
o06Tp7y+pWMfVu+JV/pHyFOb0wI4r4/6xnquUMJ+I8sw2v3dlTxHbTINOK11
FrEvfaAR+XrdO4xnL76jriLfH8t1Ne3EvKrHfJwvaPanmE/uLfrbl12N9hk4
mDzPZzn7LcuXYt3a6UDiTOwI1tP8lrDfo8oxxp2vEvJedW0x60RnUv7WFw0Z
37MDICdl7WnIWdk2GetQapixjnqiN98/84jr/WVPe+38nvlP6+7k6Tf8wUvF
0Ed//66jiOdBrs3g/2p8NPxCv1EGHqh8fkAea2tDfjq7GtapmSUwz9nn2Rv3
HTexbjUhDesQLtmSB/Z/B9yW1jkj7xWKM4EL2hMLnhsOOUX+6XEc7ytD6oJP
qv0tEFf1oyd4ThRkQjsc9Zl5st1t1oHNw5EnCsafyY9tyLelbsQbIdSK9bdS
9vOp0dbsw31ah3zVax/9yMCMdc3gw6izSbutyANGXZyG+91XsE5dtzZ4nnR/
IXlN+83IW6Sjf+sEwxusw35CNgCnVbvIg1jnPZ5jau4B+F5fuJXnGnHNEFfU
i/3YjzCkLusewWaQkyCnoX4iL19CO0v5AL+T4rYxTzDyZt75+jTrgaof6y7Z
K3iuXbMR/EIsrI04KH95yv606EDoSzcdtI9y6gOercjtsT5ZXkxcnRfAvH5G
G/Yx7/j79zV3C8izq1ohD5TN96EvS46IhL7UrVPQByYHLuc58WX2m0vhsczL
T61knSvKm3lb/+bkyyW9GZfC/cnnTFaxjtF4OPHSsxvzmrav2H9R5yDPb4xF
ym2YCc8rDBqxLpRxgf0EI4OIczvGII/Rzd7DHuVHrqwL1jZmXnFgL8/vx9MP
lfhL9KsGfuw/mM26q+TXizx7Xjr7KMb2Yh0kZgv/nqPiXta31jZjHjW7lLho
U4PnUAVdIWdtzW/igFEuzm/kJqngyarJDfw9gbr8BvPxGSLyZtXB4iXGe51F
e5Fy+Xc/Z9MRf8RFEcibhfFnWaeoNpX5xepvjM/9B6Aupj5IQZ1YaqiRp7QM
fY7v2z6knN7P4vmX4RHkWfKn7uzH+OBE/fVK4b5O/I91yug05v8LS9kX29qe
fRQ2/dh3s28B+37889jfU7oR+KxumELcdkp6hnXETCHvdaB9SVZl7BfIyoOd
CUlLXtI+3vO8QN1E3jvOjflRaBn4mGb6nfjWchf8XDs6gnx9bynipLIrCPKR
XrZina3hFuCQNtQc/q9ddGB/e6v7PN8q+sa69sHMHDz328/6+v4GWLdmHonn
wjsr9iGNOfc3zzRBnJJ2F9F+9PuYV7bZweebD7EfX1/HeqVpF/ZFpw7D/Er2
ONpNUQXOM7cqzx2KzMAvFG871mXriTw3veGCOK5EZBKfHDuwP3bsUsp/szP/
jiryF87p9baLWPctcaYeHfrzfNuxAPmnuMkM69fXrSR/j33G88GkIvbV1rhM
Pzx6nOfeG+bn4f1KH5i3dVjDPs/A6uzfszZkPcIqC/oV9+1FPBET2U+tOoez
TlXvKu3Y5jdxKq0l+6ZKu5I/umXyvHVue8aNln1fY57Q+uwX8Ugkv2vzjHhi
s4087VQR6wlBlVFv1JwKqIdyS/ZlHPvMfogWZpSruTVxwd4BfFLf8AF2K++x
ZV+AWzzkJ1asyrwv0Yr9jN/M2O9WsznjXucm5MWtCliv/WxKfnyHdRplWgWM
px2ZyHM5kzDWYeauQf1enFiH9cYqH8kn79/CfiV/xn/F9jHlds7+P4x7TwCu
ifWtWLe6EsO/Q6z2nnaeRL4p7mxBPNn7t79+QTjz3EH1IWd97FvWt9b6kr84
G7EvziOOcWf1Rv79pddn1oU+GaAPXl0jM751O89+r8tWtBuPFNixGGxGnMlY
yX6FFayvaTNvk49078V+vEUO7BNc5cA+4t27uY/tlIfQuC15cexs5k3Ta/P9
Te3gp3pcNHE6QuLfcVZZCf3on2eSH/6+Th4SOYl1oE4i7ekm69O6b2/ihE8w
x/1xi39n2C+ffctLq0Nv8sihkIOcupV/rxTQn/MYzQROaW26Qj9atZPMP/b9
YP7qMo08sVYL8HLdaxjPLwvvsJ+txmbKwTwPfqjVWUo/EwLIP8e/gL7E/meZ
V9o3or5+LoXdqa860W/zDBjHKhyGP4mvM3lukd+Q9aVxAxn/jfPIn4/k039m
FLMOV3wc8UX3C4M+Zd94ysPVgn2I7jPB18SlT9hfWKcb+5g8HMiznd69wHfl
rEcKPxkf1a38ewE5bATiv3Amj3hnFcRz62k9UMdS6rhDTvq0Cah/CxMS2Dfz
nvVhIa8y7WFLMnFu51vKc9s66F37soP3D5eRl5135PgzXfF33qJ3NuPZPHvg
hdLSk30b118gj9FMOxOP1V+ou0uHnvL7E/aM973Tef6fPId5/Zxf9KvAD8S7
4ZUZx2+6kzcV/eLfiyXMJb/KPEB/KbkOHJR09jsq/n7M25t25d8Bea5h3XJf
b9i3XOSOuK09CUBfizQg9Q3WOb8vcFgKWCxBD5aXeL9Ba3wnzTJCX44YN6YQ
92s/ysc4XhPRVya5lL+FvI4Ow31pbxz6wqSSB+xD2NOK54k2M9nn7P/9Hb6f
sQPvK2EtEGdUt5mcd5ch8EquexD2IleNLsb1dOwHPI87h74ryeA3+K4QcZx/
32VfgXnE2FLgjnBgD+1qIPmMsm4Kx6mcUwA5PgwFb9ImJ9liPHkw+/aSvInP
madox5srsY8u8w7z51YW73GdV0B5BGfw75v39MP4qlk8xlc6tMHfFYlj22Pd
QsNmRbiWLsM5gV62n+eE7/sT90uekke0O4PxlYfdML7YfQzqO6rtLP7diPc1
5u8RnuzTuLcjF+v3uwn9KlODwZMUFy98LzffjPWo5fbsQ62+FvigGu9inajI
jPHpWC/GL6N+8FstyYd9B+ebfMLvGobYn9BeQFxS/o2CfSifL2Ne2dEO+CNY
rqK8u4Uwn1uUxHyn0STsX8k2ob0UBgBPFZ/jsD9ZGY19KO2SyPPWt2X88uqN
uKmm1ud5RAfGQVmoRJ7qc4A41nMW5Wvnhn0LF3/dvPp/GPXrFA==
"], "Normals" -> {{0.6802772668695305, 0.6951839243142963, 0.232254497384865}, {0.6156890778209783, 0.7879371664015596, -0.009054350061392954}, {0.5755681341292074, 0.7949760981318692, -0.19166201077430942`}}|>;
ResourceFunction["MultiPerspectiveEmbeddingViewer"][pointMPSE]
Out[2]=

Specify a custom "DisplayFunction" to view the results:

In[3]:=
graphMPSE = <|"Embedding" -> CompressedData["
1:eJwllH9IlWcUx19mrhw56faDaSbvMjcDc61Ag9h8N2xQo0tdjVaJvf1msLhL
q7FZ46k15/xRmyalFr0xs59/6KXyZphvmem8mpr5K7d5SzIcDGtEEyJp7+dc
uBzO5znPOd9znud93t3s9Wx7Q9M04/9/iCa/ifQ/Uxwb7frDseZXrmHH6mOr
8G1PIutBX9ojx6pszyBxqaF/wQuOPXSs4V7zgHhlwc3MwSB2Sc4Ace+EDeF/
PBtun/T1Yzf/Cg9GVUm+iXi4VRlHnPbtLKmvvH3Eu/LhQf+H6NAG9S5s43X0
at2Z1DNGLeHJZ9iv4nKFV3xwj/3TYqmnjdTB7fHJ3awfugO3v/HQj3p+Dm5u
XI5OI6MUrjdn3yeP66jwT8fgZqW3B5sfjU7jzWXoNG4n9FJvfzpczZ0gXst5
1EG9UDkHdWBLv8wr8i7+W0vQoz6fQf/Gs/lt+D+UiP4BX4/0W93K3FyP4Ya/
FH3m2eEW/Mg0dNorDfrRJrmbWR/1wfUpfzMvI/FMk5z/S+EdqpN6laONrO9M
Ev3rStvZrxZcIl/sF+g3b4STVy87VYP/4xPhcUNw4+3Cy+hcmSvn/Uk1+szg
olr01XWI/hO7f2e9IryO/KdT5J5c3Sp9Tllbz77nW+DWTm+A/TFFNvq+C5H7
t+Yn5hXsTLpF3pjtcv8Oh6FfDRZUSv8/o9P4ZYz+7ZGscviOmTJn5Zf94YsK
8ct3yblELrTl3u9eS/y6LomPOngdXnX8+wYnrvh9mefcQvpUG6ced7gxuwCu
FbUzLysy5jeHW8XPhPfFnCe+dvFFhwfzlor+PfVl9OU+3Uj+9W75TmKbKoh7
9fKmY80VL4QP55c7vtb+WQPcfQKdljfhCPF3XPWspwZE/1BEHjrSWq5hM0Pl
nrct+xI/5+tax9opRTL/0YwNWE/BZXheGDp1f6fC1lTV0G/EHtE/L4Q5qn83
NVE/OkPeoQj3SfyDWjO2ZFz4k+ZL9Dmnt4U81SvknclJv0Jcalor68ca5Fxy
z9fhJ/cH6HffYrn/sWfpX2W1tTtWTy6ROR/ddws/PrODOfwj75RxY/w2/T4+
10mdF0ekr6d+9Ol3E/pYN5/K+/nRBerZsxb0El9zQe5//Htt1N2b0QNfHY9O
vdGAa0nZ99m3tEXO5YBNHr0r0I3dnir6H+yCq9z/7jGHq1HosQaK6d/y7Yer
6Vky5yY3PDgy3EV8QOO9tqcmtja8Bvk/6/A=
"], "Normals" -> {{0.6663395686422579, 0.029910801862666515`, 0.7450482690360285}, {-0.038224542984368524`, 0.7029471953130203, -0.7102141401825189}}|>;
ResourceFunction["MultiPerspectiveEmbeddingViewer"][graphMPSE, "DisplayFunction" -> Function[GraphPlot3D[\!\(\*
GraphicsBox[
NamespaceBox["NetworkGraphics",
DynamicModuleBox[{Typeset`graph = HoldComplete[
Graph[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
            34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
            63, 64}, {{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 16}, {16, 15}, {15, 14}, {14, 13}, {13, 12}, {12, 11}, {11, 10}, {10, 9}, {9, 17}, {17, 18}, {18, 19}, {19, 20}, {20, 21}, {21, 22}, {22, 23}, {23, 24}, {
            24, 32}, {32, 31}, {31, 30}, {30, 29}, {29, 28}, {28, 27}, {27, 26}, {26, 25}, {25, 33}, {33, 34}, {34, 35}, {
            35, 36}, {36, 37}, {37, 38}, {38, 39}, {39, 40}, {40, 48}, {48, 47}, {47, 46}, {46, 45}, {45, 44}, {44, 43}, {
            43, 42}, {42, 41}, {41, 49}, {49, 50}, {50, 51}, {51, 52}, {52, 53}, {53, 54}, {54, 55}, {55, 56}, {56, 64}, {
            64, 63}, {63, 62}, {62, 61}, {61, 60}, {60, 59}, {59, 58}, {58, 57}}, Null}, {FormatType -> TraditionalForm, GraphLayout -> {"Dimension" -> 2}, VertexCoordinates -> CompressedData["
1:eJx10zsKQyEUhGFJZWlhYXEKs5K4hiwhkDpbv0vIC0n4UOEy/BdhmDnH8+1x
vZ9SSuP1vfV7jstaP9f+OMMFrnCDA+5j7ZPGWjNc4Ao3OODpby598kYLXOEG
Bzz97dFc+pSNVrjBAU9/52aP5tKnbrTBAXfuuTfO0V7Nqa8acOe/e+reOEd7
Nae+akd378I9dW+co72a8+f7BDiQON4=
"], VertexLabels -> {None}}]]}, 
TagBox[GraphicsGroupBox[GraphicsComplexBox[CompressedData["
1:eJx10zsKQyEUhGFJZWlhYXEKs5K4hiwhkDpbv0vIC0n4UOEy/BdhmDnH8+1x
vZ9SSuP1vfV7jstaP9f+OMMFrnCDA+5j7ZPGWjNc4Ao3OODpby598kYLXOEG
Bzz97dFc+pSNVrjBAU9/52aP5tKnbrTBAXfuuTfO0V7Nqa8acOe/e+reOEd7
Nae+akd378I9dW+co72a8+f7BDiQON4=
"], {
{Hue[0.6, 0.7, 0.5], Opacity[0.7], Arrowheads[0.01906487232574189], ArrowBox[{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 16}, {9, 17}, {10, 9}, {11, 10}, {12, 11}, {13, 12}, {14, 13}, {15, 14}, {16, 15}, {17, 18}, {18, 19}, {19, 20}, {20, 21}, {21, 22}, {22, 23}, {23, 24}, {24, 32}, {25, 33}, {26, 25}, {27, 26}, {28, 27}, {29, 28}, {30, 29}, {31, 30}, {32, 31}, {33, 34}, {34, 35}, {35, 36}, {36, 37}, {37, 38}, {38, 39}, {39, 40}, {40, 48}, {41, 49}, {42, 41}, {43, 42}, {44, 43}, {45, 44}, {46, 45}, {47, 46}, {48, 47}, {49, 50}, {50, 51}, {51, 52}, {52, 53}, {53, 54}, {54, 55}, {55, 56}, {56, 64}, {58, 57}, {59, 58}, {60, 59}, {61, 60}, {62, 61}, {63, 62}, {64, 63}}, 0.05338164251207729]}, 
{Hue[0.6, 0.2, 0.8], EdgeForm[{GrayLevel[0], Opacity[0.7]}], DiskBox[1, 0.05338164251207729], DiskBox[2, 0.05338164251207729], DiskBox[3, 0.05338164251207729], DiskBox[4, 0.05338164251207729], DiskBox[5, 0.05338164251207729], DiskBox[6, 0.05338164251207729], DiskBox[7, 0.05338164251207729], DiskBox[8, 0.05338164251207729], DiskBox[9, 0.05338164251207729], DiskBox[10, 0.05338164251207729], DiskBox[11, 0.05338164251207729], DiskBox[12, 0.05338164251207729], DiskBox[13, 0.05338164251207729], DiskBox[14, 0.05338164251207729], DiskBox[15, 0.05338164251207729], DiskBox[16, 0.05338164251207729], DiskBox[17, 0.05338164251207729], DiskBox[18, 0.05338164251207729], DiskBox[19, 0.05338164251207729], DiskBox[20, 0.05338164251207729], DiskBox[21, 0.05338164251207729], DiskBox[22, 0.05338164251207729], DiskBox[23, 0.05338164251207729], DiskBox[24, 0.05338164251207729], DiskBox[25, 0.05338164251207729], DiskBox[26, 0.05338164251207729], DiskBox[27, 0.05338164251207729], DiskBox[28, 0.05338164251207729], DiskBox[29, 0.05338164251207729], DiskBox[30, 0.05338164251207729], DiskBox[31, 0.05338164251207729], DiskBox[32, 0.05338164251207729], DiskBox[33, 0.05338164251207729], DiskBox[34, 0.05338164251207729], DiskBox[35, 0.05338164251207729], DiskBox[36, 0.05338164251207729], DiskBox[37, 0.05338164251207729], DiskBox[38, 0.05338164251207729], DiskBox[39, 0.05338164251207729], DiskBox[40, 0.05338164251207729], DiskBox[41, 0.05338164251207729], DiskBox[42, 0.05338164251207729], DiskBox[43, 0.05338164251207729], DiskBox[44, 0.05338164251207729], DiskBox[45, 0.05338164251207729], DiskBox[46, 0.05338164251207729], DiskBox[47, 0.05338164251207729], DiskBox[48, 0.05338164251207729], DiskBox[49, 0.05338164251207729], DiskBox[50, 0.05338164251207729], DiskBox[51, 0.05338164251207729], DiskBox[52, 0.05338164251207729], DiskBox[53, 0.05338164251207729], DiskBox[54, 0.05338164251207729], DiskBox[55, 0.05338164251207729], DiskBox[56, 0.05338164251207729], DiskBox[57, 0.05338164251207729], DiskBox[58, 0.05338164251207729], DiskBox[59, 0.05338164251207729], DiskBox[60, 0.05338164251207729], DiskBox[61, 0.05338164251207729], DiskBox[62, 0.05338164251207729], DiskBox[63, 0.05338164251207729], DiskBox[64, 0.05338164251207729]}}]],
MouseAppearanceTag["NetworkGraphics"]],
AllowKernelInitialization->False]],
DefaultBaseStyle->{"NetworkGraphics", FrontEnd`GraphicsHighlightColor -> Hue[0.8, 1., 0.6]},
FormatType->TraditionalForm,
FrameTicks->None]\), VertexCoordinates -> graphMPSE["Embedding"], EdgeShapeFunction -> "DashedLine", VertexLabels -> None, VertexSize -> 0.5, ##]]]
Out[4]=

Publisher

N. Murzin

Version History

  • 1.0.0 – 17 July 2020

Related Resources

License Information