Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the orthotomic of a curve
ResourceFunction["Orthotomic"][c,t] computes the orthotomic in parameter t of a curve c with respect to the point {0,0}. | |
ResourceFunction["Orthotomic"][c,p,t] computes the orthotomic with respect to the point p. | |
ResourceFunction["Orthotomic"][c,l,t] computes the orthotomic with respect to the infinite line l. |
Orthotomic of a circle with respect to the origin:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Orthotomic of a circle with respect to the point {1,1}:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Orthotomic of an eight curve with respect to a varying point:
In[5]:= |
In[6]:= |
Out[6]= |
Parametric equations for a deltoid:
In[7]:= |
Out[7]= |
Orthotomic of the deltoid with respect to a given line:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Orthotomic of a bifolium with respect to a varying line:
In[10]:= |
In[11]:= |
Out[11]= |
The orthotomic is equivalent to the pedal curve, scaled by a factor of 2:
In[12]:= |
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
The catacaustic curve is the evolute of the orthotomic:
In[17]:= |
In[18]:= |
Out[18]= |
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
Generate the orthotomic as an envelope of circles:
In[22]:= |
In[23]:= |
Out[23]= |
In[24]:= |
Out[24]= |
This work is licensed under a Creative Commons Attribution 4.0 International License