Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the irreducible group representation of SU(2) for a given angular momentum
ResourceFunction["WignerMatrix"][j,a] computes the Wigner matrix corresponding to the matrix a representing the irreducible Lie group representation corresponding to angular momentum j. |
For j=1/2, WignerMatrix yields the fundamental representation (i.e. the identity function):
| In[1]:= |
| Out[1]= |
The matrix entries are homogeneous polynomial functions of the elements of the argument matrix
:
| In[2]:= |
| Out[2]= | ![]() |
Obtain the images of the infinitesimal generators using PauliMatrix:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
| In[4]:= |
| Out[4]= | ![]() |
| In[5]:= |
| Out[5]= | ![]() |
Verify an identity:
| In[6]:= |
| Out[6]= |
For j=1 and argument matrices expressed in terms of Euler angles, the result of WignerMatrix is related to EulerMatrix through a similarity transformation:
| In[7]:= | ![]() |
| Out[7]= |
For general angular momentum j, the entries of WignerMatrix are given by WignerD functions:
| In[8]:= | ![]() |
| Out[8]= |
Check the multiplicative property of WignerMatrix:
| In[9]:= | ![]() |
| Out[9]= |
The determinant of WignerMatrix with angular momentum j is the j(2j+1)th power of the determinant of the argument matrix:
| In[10]:= | ![]() |
| Out[10]= |
The character of the representation, i.e. the trace of WignerMatrix, is given by Tr[WignerMatrix[j,x]]=Det[x]jChebyshevU[2j,Tr[x]/(2Sqrt[Det[x]])]:
| In[11]:= | ![]() |
| Out[11]= |
As a matrix with homogeneous polynomial entries, WignerMatrix must satisfy Euler's homogeneity relation:
| In[12]:= | ![]() |
| Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License