Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the regular solid harmonic function
ResourceFunction["SolidHarmonicR"][l,m,x,y,z] gives the regular solid harmonic . |
Evaluate symbolically:
In[1]:= |
|
Out[1]= |
|
Plot over a subset of the reals:
In[2]:= |
|
Out[2]= |
|
Evaluate to high precision:
In[3]:= |
|
Out[3]= |
|
The precision of the output tracks the precision of the input:
In[4]:= |
|
Out[4]= |
|
SolidHarmonicR threads elementwise over lists:
In[5]:= |
|
Out[5]= |
|
Plot a real linear combination of regular solid harmonics:
In[6]:= |
|
Out[6]= |
|
The regular solid harmonic satisfies the Laplace equation:
In[7]:= |
|
Out[7]= |
|
SolidHarmonicR uses Racah's normalization:
In[8]:= |
|
Out[8]= |
|
SolidHarmonicR can be expressed in terms of SphericalHarmonicY:
In[9]:= |
|
Out[9]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License