Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Symmetrically reorder the rows and columns of a square matrix
ResourceFunction["SymmetricSort"][matrix,from,to] symmetrically reorders the elements of matrix from ordering from to ordering to. | |
ResourceFunction["SymmetricSort"][matrix,index] symmetrically reorders the elements of matrix by the ordering represented by index. |
Generate a covariance matrix from example data:
| In[1]:= | ![]() |
| Out[1]= | ![]() |
The covariance matrix is symmetric and positive semidefinite:
| In[2]:= |
| Out[2]= |
A SymmetricSort using the variable names to change the order of the variables:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
Symmetric and positive semidefinite properties are preserved:
| In[4]:= |
| Out[4]= |
SymmetricSort can also take an ordering of position indices:
| In[5]:= | ![]() |
| Out[5]= | ![]() |
SymmetricSort preserves the diagonal and the relative positions of the upper and lower off-diagonals:
| In[6]:= |
| Out[6]= | ![]() |
Diagonal elements in the original matrix remain on the diagonal in the reordered matrix, and off-diagonal relative positions are comparable. For example, m34 is still mirrored with m43:
| In[7]:= |
| Out[7]= | ![]() |
SymmetricSort accepts permutations expressed in cycle format:
| In[8]:= |
| Out[8]= | ![]() |
Properties of Graph, like WeightedAdjacencyMatrix, are given in the order of VertexList:
| In[9]:= | ![]() |
| Out[9]= | ![]() |
SymmetricSort property elements in canonical order:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
SymmetricSort the HadamardMatrix:
| In[11]:= |
| Out[11]= | ![]() |
The permuted matrix is involutory, just like the original Hadamard matrix:
| In[12]:= |
| Out[12]= |
The eigenvalues of a symmetric matrix are invariant under SymmetricSort:
| In[13]:= |
| Out[13]= | ![]() |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
An upper bidiagonal matrix:
| In[16]:= |
| Out[16]= | ![]() |
Generate a symmetric block matrix with bidiagonal blocks:
| In[17]:= |
| Out[17]= | ![]() |
Use the resource function OutShuffle with SymmetricSort to transform the matrix into a tridiagonal matrix:
| In[18]:= |
| Out[18]= | ![]() |
Compute the singular values of a numerical upper bidiagonal matrix:
| In[19]:= | ![]() |
| Out[19]= |
These are equivalent to the positive eigenvalues of the permuted block matrix:
| In[20]:= | ![]() |
| Out[20]= |
This work is licensed under a Creative Commons Attribution 4.0 International License