Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert subscripted symbols into indexed symbols
ResourceFunction["SubscriptToSymbol"][expr] converts subscripted symbols within expr to non-subscripted forms. |
Use SubscriptToSymbol with a subscripted symbol:
In[1]:= |
Out[1]= |
Use SubscriptToSymbol with a list of unprotected indexed symbols:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
Use SubscriptToSymbol with a list of expressions:
In[5]:= |
Out[5]= |
Use SubscriptToSymbol with indexed capital C related with the default form for the ith constant C[i]:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
Use SubscriptToSymbol with symbolic matrix:
In[8]:= |
Out[9]= |
Use SubscriptToSymbol with tensor of rank 3:
In[10]:= |
Out[10]= |
Use SubscriptToSymbol with tensor of rank 4:
In[11]:= |
Out[11]= |
Use SubscriptToSymbol with a nonlinear system of ordinary differential equations:
In[12]:= |
Out[12]= |
Use SubscriptToSymbol with a system of partial differential equations:
In[13]:= |
Out[13]= |
Format a symbolic polynomial:
In[14]:= |
In[15]:= |
Out[15]= |
Format a matrix:
In[16]:= |
Out[16]= |
Define a function for making a Vandermonde matrix:
In[17]:= |
Format a Vandermonde matrix:
In[18]:= |
Out[18]= |
Use SubscriptToSymbol with the resource function HurwitzMatrix:
In[19]:= |
Out[20]= |
In[21]:= |
Out[21]= |
Use SubscriptToSymbol with the resource functions SymbolToSubscript and HurwitzMatrix:
In[22]:= |
Out[22]= |
In[23]:= |
Out[23]= |
Convert back to standard symbols:
In[24]:= |
Out[24]= |
Use SubscriptToSymbol with the resource function SolutionRulesToFunctions:
In[25]:= |
Out[25]= |
Use SubscriptToSymbol with nested subscripts:
In[26]:= |
Out[26]= |
Use SubscriptToSymbol with nested functions:
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
Use SubscriptToSymbol with composite functions:
In[29]:= |
Out[29]= |
In[30]:= |
Out[30]= |
Use SubscriptToSymbol with curried-like functions:
In[31]:= |
Out[31]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License