Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the orientation of a simplex
ResourceFunction["SimplexOrientation"][simplex] returns the orientation of simplex. | |
ResourceFunction["SimplexOrientation"][{simplex1,simplex2,…}] returns the orientation of simplices in the given complex. |
Get the orientation of a simplex:
In[1]:= |
Out[1]= |
In[2]:= |
Out[2]= |
Find the permutations of the vertices of a simplex that are equivalent to the original simplex:
In[3]:= |
Out[3]= |
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
Get orientations for a list of simplices:
In[6]:= |
Out[6]= |
In[7]:= |
Out[7]= |
SimplexOrientation works with Point:
In[8]:= |
Out[8]= |
SimplexOrientation works with Line:
In[9]:= |
Out[9]= |
In[10]:= |
Out[10]= |
SimplexOrientation works with Triangle:
In[11]:= |
Out[11]= |
In[12]:= |
Out[12]= |
SimplexOrientation works with Tetrahedron:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Visualize orientation using Graphics3D and FaceForm:
In[15]:= |
In[16]:= |
Out[16]= |
Simplices can have arbitrary expressions as vertices:
In[17]:= |
Out[17]= |
We can see that the cat-dog-bird simplex has the opposite orientation to the cat-bird-dog simplex:
In[18]:= |
Out[18]= |
Check the output of the three argument form of StandardSimplex:
In[19]:= |
Out[19]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License