Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the orientation of a simplex
ResourceFunction["SimplexOrientation"][simplex] returns the orientation of simplex. | |
ResourceFunction["SimplexOrientation"][{simplex1,simplex2,…}] returns the orientation of simplices in the given complex. |
Get the orientation of a simplex:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= |
Find the permutations of the vertices of a simplex that are equivalent to the original simplex:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= |
| In[5]:= |
| Out[5]= |
Get orientations for a list of simplices:
| In[6]:= |
| Out[6]= |
| In[7]:= |
| Out[7]= |
SimplexOrientation works with Point:
| In[8]:= |
| Out[8]= |
SimplexOrientation works with Line:
| In[9]:= |
| Out[9]= |
| In[10]:= |
| Out[10]= |
SimplexOrientation works with Triangle:
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
SimplexOrientation works with Tetrahedron:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
Visualize orientation using Graphics3D and FaceForm:
| In[15]:= |
| In[16]:= |
| Out[16]= | ![]() |
Simplices can have arbitrary expressions as vertices:
| In[17]:= | ![]() |
| Out[17]= |
We can see that the cat-dog-bird simplex has the opposite orientation to the cat-bird-dog simplex:
| In[18]:= | ![]() |
| Out[18]= |
Check the output of the three argument form of StandardSimplex:
| In[19]:= | ![]() |
| Out[19]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License