Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the standard simplex for a specified dimension
ResourceFunction["StandardSimplex"][n] gives the standard n-simplex embedded in | |
ResourceFunction["StandardSimplex"][n,len] gives the standard n-simplex with edge lengths of len. | |
ResourceFunction["StandardSimplex"][n,len,orientation] orients the simplex according to orientation. |
Get the standard 0-simplex:
In[1]:= | ![]() |
Out[1]= | ![]() |
Get the standard 1-simplex:
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
Get the standard 2-simplex:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
Get the standard 2-simplex with unit edge lengths:
In[6]:= | ![]() |
Out[6]= | ![]() |
Get the standard 3-simplex with symbolic edge lengths:
In[7]:= | ![]() |
Out[7]= | ![]() |
Get a reverse orientation simplex:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
Compare to the canonical orientation:
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Forward orientation can be specified as 1, True or Automatic:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Reverse orientation can be specified as -1 or False:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
The measure of StandardSimplex[n] is given by :
In[17]:= | ![]() |
Out[17]= | ![]() |
The standard simplex becomes very small in higher dimensions:
In[18]:= | ![]() |
Out[18]= | ![]() |
Inspect the orientations using ResourceFunction["SimplexOrientation"]:
In[19]:= | ![]() |
Out[19]= | ![]() |
In[20]:= | ![]() |
Out[20]= | ![]() |
When n is zero, StandardSimplex will not return a Simplex, since Simplex will evaluate to a Point:
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
The 0-simplex has no edges to scale:
In[23]:= | ![]() |
Out[23]= | ![]() |
The dimension specification must be a positive machine integer:
In[24]:= | ![]() |
Out[24]= | ![]() |
Visualize the boundary of the standard 2-simplex:
In[25]:= | ![]() |
Out[25]= | ![]() |
In[26]:= | ![]() |
Out[26]= | ![]() |
Project the standard 2-simplex into using an orthogonal projection:
In[27]:= | ![]() |
Out[27]= | ![]() |
In[28]:= | ![]() |
Out[28]= | ![]() |
In[29]:= | ![]() |
Out[29]= | ![]() |
Project the standard 3-simplex into using an orthogonal projection:
In[30]:= | ![]() |
Out[30]= | ![]() |
In[31]:= | ![]() |
Out[31]= | ![]() |
In[32]:= | ![]() |
Out[32]= | ![]() |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License