Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the standard simplex for a specified dimension
ResourceFunction["StandardSimplex"][n] gives the standard n-simplex embedded in . | |
ResourceFunction["StandardSimplex"][n,len] gives the standard n-simplex with edge lengths of len. | |
ResourceFunction["StandardSimplex"][n,len,orientation] orients the simplex according to orientation. |
Get the standard 0-simplex:
In[1]:= |
Out[1]= |
Get the standard 1-simplex:
In[2]:= |
Out[2]= |
In[3]:= |
Out[3]= |
Get the standard 2-simplex:
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
Get the standard 2-simplex with unit edge lengths:
In[6]:= |
Out[6]= |
Get the standard 3-simplex with symbolic edge lengths:
In[7]:= |
Out[7]= |
Get a reverse orientation simplex:
In[8]:= |
Out[8]= |
In[9]:= |
Out[9]= |
Compare to the canonical orientation:
In[10]:= |
Out[10]= |
In[11]:= |
Out[11]= |
Forward orientation can be specified as 1, True or Automatic:
In[12]:= |
Out[12]= |
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Reverse orientation can be specified as -1 or False:
In[15]:= |
Out[15]= |
In[16]:= |
Out[16]= |
The measure of StandardSimplex[n] is given by :
In[17]:= |
Out[17]= |
The standard simplex becomes very small in higher dimensions:
In[18]:= |
Out[18]= |
Inspect the orientations using ResourceFunction["SimplexOrientation"]:
In[19]:= |
Out[19]= |
In[20]:= |
Out[20]= |
When n is zero, StandardSimplex will not return a Simplex, since Simplex will evaluate to a Point:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
The 0-simplex has no edges to scale:
In[23]:= |
Out[23]= |
The dimension specification must be a positive machine integer:
In[24]:= |
Out[24]= |
Visualize the boundary of the standard 2-simplex:
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
Project the standard 2-simplex into using an orthogonal projection:
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
In[29]:= |
Out[29]= |
Project the standard 3-simplex into using an orthogonal projection:
In[30]:= |
Out[30]= |
In[31]:= |
Out[31]= |
In[32]:= |
Out[32]= |
Wolfram Language 11.3 (March 2018) or above
This work is licensed under a Creative Commons Attribution 4.0 International License