Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the shape operator on a surface
ResourceFunction["ShapeOperator"][s,{u,v}] computes the shape operator of surface s with respect to variables u and v. |
Shape operator on the sphere:
In[1]:= |
![]() |
In[2]:= |
![]() |
Out[2]= |
![]() |
The monkey saddle:
In[3]:= |
![]() |
In[4]:= |
![]() |
Out[4]= |
![]() |
The shape operator:
In[5]:= |
![]() |
Out[5]= |
![]() |
A paraboloid:
In[6]:= |
![]() |
In[7]:= |
![]() |
The shape operator:
In[8]:= |
![]() |
Out[8]= |
![]() |
Alternatively, the resource function UnitNormal can be used to compute the shape operator:
In[9]:= |
![]() |
Out[9]= |
![]() |
The Weingarten matrix can be computed using the shape operator with the metric:
In[10]:= |
![]() |
Out[10]= |
![]() |
In[11]:= |
![]() |
Out[11]= |
![]() |
Check the calculation:
In[12]:= |
![]() |
Out[12]= |
![]() |
A Monge patch:
In[13]:= |
![]() |
Gaussian and mean curvatures:
In[14]:= |
![]() |
Out[14]= |
![]() |
In[15]:= |
![]() |
Out[15]= |
![]() |
The shape operator:
In[16]:= |
![]() |
Out[16]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License