Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create an unfolding net for a given polyhedron
ResourceFunction["RandomPolyhedralNet"][poly] creates an unfolding net from a simple polyhedron poly. | |
ResourceFunction["RandomPolyhedralNet"][v,f] creates an unfolding net from a polyhedron defined by vertices v and face indices f. |
Create a random net for a cube:
| In[1]:= |
| Out[1]= |
Show the random net:
| In[2]:= |
| Out[2]= | ![]() |
Construct a random net for a cube represented through a list of vertices and face indices:
| In[3]:= | ![]() |
| Out[5]= | ![]() |
Show the random net:
| In[6]:= |
| Out[6]= | ![]() |
Make a random net for the gyrobifastigium:
| In[7]:= |
| Out[7]= | ![]() |
Show the random net:
| In[8]:= |
| Out[8]= | ![]() |
A randomly-generated convex hull polyhedron:
| In[9]:= |
| Out[9]= |
Generate and show a random net:
| In[10]:= | ![]() |
| Out[11]= | ![]() |
RandomPolyhedralNet only works for simple polyhedra:
| In[13]:= | ![]() |
| Out[14]= |
| In[15]:= |
| Out[15]= |
Concave polyhedra often have overlapping random nets:
| In[16]:= | ![]() |
| Out[17]= | ![]() |
Verify that the rhombic hexecontahedron is not convex:
| In[18]:= |
| Out[18]= |
It may not be clear how a net folds together:
| In[19]:= | ![]() |
| Out[20]= | ![]() |
Find a random net for the hexakis icosahedron:
| In[21]:= | ![]() |
| Out[22]= | ![]() |
Find a random net for the great rhombicosidodecahedron:
| In[23]:= | ![]() |
| Out[15]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License