Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Create an unfolding net for a given polyhedron
ResourceFunction["RandomPolyhedralNet"][poly] creates an unfolding net from a simple polyhedron poly. | |
ResourceFunction["RandomPolyhedralNet"][v,f] creates an unfolding net from a polyhedron defined by vertices v and face indices f. |
Create a random net for a cube:
In[1]:= | ![]() |
Out[1]= | ![]() |
Show the random net:
In[2]:= | ![]() |
Out[2]= | ![]() |
Construct a random net for a cube represented through a list of vertices and face indices:
In[3]:= | ![]() |
Out[5]= | ![]() |
Show the random net:
In[6]:= | ![]() |
Out[6]= | ![]() |
Make a random net for the gyrobifastigium:
In[7]:= | ![]() |
Out[7]= | ![]() |
Show the random net:
In[8]:= | ![]() |
Out[8]= | ![]() |
A randomly-generated convex hull polyhedron:
In[9]:= | ![]() |
Out[9]= | ![]() |
Generate and show a random net:
In[10]:= | ![]() |
Out[11]= | ![]() |
RandomPolyhedralNet only works for simple polyhedra:
In[13]:= | ![]() |
Out[14]= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
Concave polyhedra often have overlapping random nets:
In[16]:= | ![]() |
Out[17]= | ![]() |
Verify that the rhombic hexecontahedron is not convex:
In[18]:= | ![]() |
Out[18]= | ![]() |
It may not be clear how a net folds together:
In[19]:= | ![]() |
Out[20]= | ![]() |
Find a random net for the hexakis icosahedron:
In[21]:= | ![]() |
Out[22]= | ![]() |
Find a random net for the great rhombicosidodecahedron:
In[23]:= | ![]() |
Out[15]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License