Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the radical inverse of an integer to a given base
ResourceFunction["RadicalInverse"][n] gives the base 10 radical inverse of the integer n. | |
ResourceFunction["RadicalInverse"][b,n] gives the base-b radical inverse of the integer n. |
The base-10 radical inverse of 42:
In[1]:= | ![]() |
Out[1]= | ![]() |
The base-2 radical inverse of 42:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot the binary radical inverse:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for large arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
RadicalInverse automatically threads over lists:
In[5]:= | ![]() |
Out[5]= | ![]() |
Demonstrate the filling of the unit interval with the decimal radical inverse, also known as the van der Corput sequence:
In[6]:= | ![]() |
Out[6]= | ![]() |
Generate a 2D Halton sequence with bases 2 and 3:
In[7]:= | ![]() |
Out[7]= | ![]() |
Generate a 2D binary Hammersley sequence:
In[8]:= | ![]() |
Out[8]= | ![]() |
Compare the Halton and Hammersley sequences for approximating π by quasi-Monte Carlo integration:
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License