Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a unit quaternion to an equivalent rotation matrix
ResourceFunction["QuaternionToRotationMatrix"][w] converts the unit quaternion w into an equivalent 3×3 rotation matrix. |
Define a quaternion:
In[1]:= |
![]() |
Out[1]= |
![]() |
Generate a rotation matrix from a unit quaternion:
In[2]:= |
![]() |
Out[2]= |
![]() |
Verify that the result is a rotation matrix:
In[3]:= |
![]() |
Out[3]= |
![]() |
An exact quaternion:
In[4]:= |
![]() |
Out[4]= |
![]() |
An approximate MachinePrecision quaternion:
In[5]:= |
![]() |
Out[5]= |
![]() |
An approximate arbitrary precision quaternion:
In[6]:= |
![]() |
Out[6]= |
![]() |
QuaternionToRotationMatrix threads over lists:
In[7]:= |
![]() |
Out[7]= |
![]() |
Create a unit quaternion:
In[8]:= |
![]() |
Out[8]= |
![]() |
Also define a vector to be rotated:
In[9]:= |
![]() |
Out[9]= |
![]() |
Transform the vector using the quaternion representation of a rotation:
In[10]:= |
![]() |
Out[10]= |
![]() |
Transform the vector using the rotation matrix representation to get the same result:
In[11]:= |
![]() |
Out[11]= |
![]() |
Get the axis-angle representation of a quaternion:
In[12]:= |
![]() |
Out[12]= |
![]() |
Recover the original quaternion:
In[13]:= |
![]() |
Out[13]= |
![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License