Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Convert a unit quaternion to an equivalent rotation matrix
ResourceFunction["QuaternionToRotationMatrix"][w] converts the unit quaternion w into an equivalent 3×3 rotation matrix. |
Define a quaternion:
| In[1]:= |
| Out[1]= |
Generate a rotation matrix from a unit quaternion:
| In[2]:= |
| Out[2]= | ![]() |
Verify that the result is a rotation matrix:
| In[3]:= |
| Out[3]= |
An exact quaternion:
| In[4]:= |
| Out[4]= | ![]() |
An approximate MachinePrecision quaternion:
| In[5]:= |
| Out[5]= |
An approximate arbitrary precision quaternion:
| In[6]:= |
| Out[6]= |
QuaternionToRotationMatrix threads over lists:
| In[7]:= |
| Out[7]= |
Create a unit quaternion:
| In[8]:= |
| Out[8]= |
Also define a vector to be rotated:
| In[9]:= |
| Out[9]= |
Transform the vector using the quaternion representation of a rotation:
| In[10]:= |
| Out[10]= |
Transform the vector using the rotation matrix representation to get the same result:
| In[11]:= |
| Out[11]= |
Get the axis-angle representation of a quaternion:
| In[12]:= | ![]() |
| Out[12]= |
Recover the original quaternion:
| In[13]:= |
| Out[13]= |
Create the icosians, a set of quaternions equivalent to the vertices of the 4D 600-cell:
| In[14]:= | ![]() |
Use the icosians to generate the 120 rotation matrices in the icosahedral group:
| In[15]:= | ![]() |
Use the 120 rotation matrices and one triangle of the disdyakis triacontahedron to build the full figure:
| In[16]:= | ![]() |
| Out[16]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License