Function Repository Resource:

PythagoreanTripleQ (1.0.1)current version: 2.0.0 »

Determine whether a triple of integers constitutes a Pythagorean triple

Contributed by: Jordan Hasler, Wolfram|Alpha Math Team
 ResourceFunction["PythagoreanTripleQ"][{a,b,c}] determines whether the triple of integers {a,b,c} satisfies a2+b2=c2.

Details

The option "UnorderedTriple" determines whether to treat the input as ordered and defaults to False. When set to True, ResourceFunction["PythagoreanTripleQ"] returns True if any ordering of the triples satisfies a2+b2=c2.

Examples

Basic Examples (2)

The ordered triple {3, 4, 5} is a Pythagorean triple:

 In[1]:=
 Out[1]=

{2, 3, 4} is not a Pythagorean triple:

 In[2]:=
 Out[2]=

Options (2)

{5, 4, 3} is not a Pythagorean triple:

 In[3]:=
 Out[3]=

Specify that the triple is unordered to determine if any ordering of the numbers is a Pythagorean triple:

 In[4]:=
 Out[4]=

Properties and Relations (2)

To determine whether any ordering of potentially noninteger side lengths forms a right triangle, use RightTriangleQ

 In[5]:=
 Out[5]=
 In[6]:=
 Out[6]=

The integers {5,4,3} can form a right triangle when considered as edge lengths, but do not form a Pythagorean triple due to their ordering:

 In[7]:=
 Out[7]=
 In[8]:=
 Out[8]=

Publisher

Wolfram|Alpha Math Team

Version History

• 2.0.0 – 23 March 2023
• 1.0.1 – 29 March 2021
• 1.0.0 – 18 September 2020

Author Notes

To view the full source code for PythagoreanTripleQ, run the following code:

 In[1]:=