Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the power diagram of a set of circles
ResourceFunction["PowerDiagram"][{c1,c2,…}] gives a MeshRegion representing the power diagram of the circles c1,c2, …. | |
ResourceFunction["PowerDiagram"][{c1,c2,…},{{xmin,xmax},…}] clips the mesh to the bounds [xmin,xmax]×⋯. |
Generate the power diagram of a set of circles:
In[1]:= |
Out[1]= |
Show the power diagram with the generating circles:
In[2]:= |
Out[2]= |
Create a power diagram from a set of disks:
In[3]:= |
Out[3]= |
Basic properties:
In[4]:= |
Out[4]= |
Power diagrams are full dimensional:
In[5]:= |
Out[5]= |
Power diagrams are bounded by their clipping values:
In[6]:= |
Out[6]= |
Generate the power diagram of a mixture of Circle and Disk objects:
In[7]:= |
Out[7]= |
MeshCellHighlight allows you to specify highlighting for parts of a PowerDiagram:
In[8]:= |
Out[8]= |
Individual cells can be highlighted using their cell index:
In[9]:= |
Out[9]= |
Or by the cell itself:
In[10]:= |
Out[10]= |
MeshCellLabel can be used to label parts of a PowerDiagram:
In[11]:= |
Out[11]= |
Individual cells can be labeled using their cell index:
In[12]:= |
Out[12]= |
Or by the cell itself:
In[13]:= |
Out[13]= |
MeshCellMarker can be used to assign values to parts of a PowerDiagram:
In[14]:= |
Out[14]= |
Use MeshCellLabel to show the markers:
In[15]:= |
Out[15]= |
MeshCellStyle allows you to specify styling for parts of a PowerDiagram:
In[16]:= |
Out[16]= |
Individual cells can be highlighted using their cell index:
In[17]:= |
Out[17]= |
Or by the cell itself:
In[18]:= |
Out[18]= |
Use a theme with grid lines and a legend:
In[19]:= |
Out[19]= |
Use a theme to draw a wireframe:
In[20]:= |
Out[20]= |
The output of PowerDiagram is always a full-dimensional MeshRegion:
In[21]:= |
Out[21]= |
In[22]:= |
Out[22]= |
The power diagram of two circles is composed of two half-planes divided by the radical line of the two circles:
In[23]:= |
Out[23]= |
If one circle encloses the other, the cell corresponding to the inner circle is empty:
In[24]:= |
Out[24]= |
The power diagram of a set of circles all having the same radii is equivalent to the VoronoiMesh of the circles' centers:
In[25]:= |
Out[25]= |
The resource function PowerTriangulation is the dual of PowerDiagram:
In[26]:= |
Out[29]= |
This work is licensed under a Creative Commons Attribution 4.0 International License