Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the orthotomic of a curve
ResourceFunction["Orthotomic"][c,t] computes the orthotomic in parameter t of a curve c with respect to the point {0,0}. | |
ResourceFunction["Orthotomic"][c,p,t] computes the orthotomic with respect to the point p. | |
ResourceFunction["Orthotomic"][c,l,t] computes the orthotomic with respect to the infinite line l. |
Orthotomic of a circle with respect to the origin:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= | ![]() |
Orthotomic of a circle with respect to the point {1,1}:
| In[3]:= |
| Out[3]= |
| In[4]:= |
| Out[4]= | ![]() |
Orthotomic of an eight curve with respect to a varying point:
| In[5]:= |
| In[6]:= | ![]() |
| Out[6]= | ![]() |
Parametric equations for a deltoid:
| In[7]:= |
| Out[7]= |
Orthotomic of the deltoid with respect to a given line:
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= | ![]() |
Orthotomic of a bifolium with respect to a varying line:
| In[10]:= |
| In[11]:= | ![]() |
| Out[11]= | ![]() |
The orthotomic is equivalent to the pedal curve, scaled by a factor of 2:
| In[12]:= |
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
| In[15]:= |
| Out[15]= |
| In[16]:= |
| Out[16]= | ![]() |
The catacaustic curve is the evolute of the orthotomic:
| In[17]:= |
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
| In[20]:= |
| Out[20]= |
| In[21]:= |
| Out[21]= | ![]() |
Generate the orthotomic as an envelope of circles:
| In[22]:= |
| In[23]:= |
| Out[23]= |
| In[24]:= | ![]() |
| Out[24]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License