Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the orthogonal polynomial Vandermonde matrix corresponding to a given vector
ResourceFunction["OrthogonalPolynomialVandermondeMatrix"][poly,{a1,a2,…}] generates the orthogonal polynomial Vandermonde matrix V(a1,a2,…) with respect to the basis represented by poly. |
"ChebyshevFirst" | Chebyshev polynomial of the first kind ChebyshevT[i,x] |
"ChebyshevSecond" | Chebyshev polynomial of the second kind ChebyshevU[i,x] |
"Hermite" | Hermite polynomial HermiteH[i,x] |
"Laguerre" | Laguerre polynomial LaguerreL[i,x] |
"Legendre" | Legendre polynomial LegendreP[i,x] |
{"Gegenbauer",m} | Gegenbauer polynomial GegenbauerC[i,m,x] |
{"Laguerre",a} | associated Laguerre polynomial LaguerreL[i,a,x] |
{"Jacobi",a,b} | Jacobi polynomial JacobiP[i,a,b,x] |
A Chebyshev–Vandermonde matrix:
In[1]:= |
|
Out[1]= |
|
Jacobi–Vandermonde matrix with symbolic parameters and vector:
In[2]:= |
|
Out[2]= |
|
An equivalent specification:
In[3]:= |
|
Out[3]= |
|
A numerical Hermite–Vandermonde matrix:
In[4]:= |
|
Out[4]= |
|
A rectangular Legendre–Vandermonde matrix:
In[5]:= |
|
Out[5]= |
|
With "Transpose"→True, OrthogonalPolynomialVandermondeMatrix generates a transposed matrix:
In[6]:= |
|
Out[6]= |
|
In[7]:= |
|
Out[7]= |
|
This work is licensed under a Creative Commons Attribution 4.0 International License