Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a polygon with notched corners
ResourceFunction["NotchedPolygon"][{p1,…,pn},r] represents a filled notched polygon with points pi and notch radius r. | |
ResourceFunction["NotchedPolygon"][{p1,…,pn},{r1,…,rn}] represents a filled notched polygon with points pi and corresponding notch radii ri. |
A triangle with notched corners:
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
A rectangle with different notch radii for each corner:
In[3]:= | ![]() |
Out[3]= | ![]() |
Coordinates for a star-shaped polygon:
In[4]:= | ![]() |
Show the original polygon and the notched version:
In[5]:= | ![]() |
Out[5]= | ![]() |
Use different notch radii for each vertex:
In[6]:= | ![]() |
Out[6]= | ![]() |
A notched 3D polygon:
In[7]:= | ![]() |
Out[7]= | ![]() |
Plot a function over a notched polygon domain:
In[8]:= | ![]() |
Out[8]= | ![]() |
A polyhedron with notched faces:
In[9]:= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
NotchedPolygon returns a Polygon object:
In[11]:= | ![]() |
Out[11]= | ![]() |
If the notch radius is too large, NotchedPolygon may give unexpected results:
In[12]:= | ![]() |
Out[12]= | ![]() |
Use a smaller notch radius:
In[13]:= | ![]() |
Out[13]= | ![]() |
Use NotchedPolygon with the resource function OutlinePolygons on a truncated icosahedron:
In[14]:= | ![]() |
In[15]:= | ![]() |
Out[15]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License