Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a polygon with notched corners
ResourceFunction["NotchedPolygon"][{p1,…,pn},r] represents a filled notched polygon with points pi and notch radius r. | |
ResourceFunction["NotchedPolygon"][{p1,…,pn},{r1,…,rn}] represents a filled notched polygon with points pi and corresponding notch radii ri. |
A triangle with notched corners:
| In[1]:= |
| Out[1]= |
| In[2]:= |
| Out[2]= | ![]() |
A rectangle with different notch radii for each corner:
| In[3]:= |
| Out[3]= | ![]() |
Coordinates for a star-shaped polygon:
| In[4]:= |
Show the original polygon and the notched version:
| In[5]:= |
| Out[5]= | ![]() |
Use different notch radii for each vertex:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
A notched 3D polygon:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
Plot a function over a notched polygon domain:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
A polyhedron with notched faces:
| In[9]:= |
| In[10]:= |
| Out[10]= | ![]() |
NotchedPolygon returns a Polygon object:
| In[11]:= |
| Out[11]= |
If the notch radius is too large, NotchedPolygon may give unexpected results:
| In[12]:= |
| Out[12]= | ![]() |
Use a smaller notch radius:
| In[13]:= |
| Out[13]= | ![]() |
Use NotchedPolygon with the resource function OutlinePolygons on a truncated icosahedron:
| In[14]:= |
| In[15]:= | ![]() |
| Out[15]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License