Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Compute the normal vector of a curve
ResourceFunction["NormalVector"][c,t] computes the normal vector for a curve c parametrized by t. |
A unit speed helix:
In[1]:= | ![]() |
Compute the normal vector:
In[2]:= | ![]() |
Out[2]= | ![]() |
The normal vector of a figure-eight curve:
In[3]:= | ![]() |
Out[3]= | ![]() |
In[4]:= | ![]() |
Out[4]= | ![]() |
Plot a set of normal vectors:
In[5]:= | ![]() |
Out[5]= | ![]() |
Define a helix curve:
In[6]:= | ![]() |
Compute the normal vector:
In[7]:= | ![]() |
Out[7]= | ![]() |
The binormal vector, via the resource function BinormalVector:
In[8]:= | ![]() |
Out[8]= | ![]() |
The normal plane is spanned by the normal vector and the binormal vector. It can be computed with the resource function NormalPlane:
In[9]:= | ![]() |
Out[9]= | ![]() |
The normal plane and the normal vector along the helix:
In[10]:= | ![]() |
Out[10]= | ![]() |
The definition of Viviani's curve:
In[11]:= | ![]() |
Out[11]= | ![]() |
Plot the curve:
In[12]:= | ![]() |
Out[12]= | ![]() |
The normal surface associated to a curve is generated by its normal vector field. It can be computed with the resource function NormalSurface:
In[13]:= | ![]() |
Out[13]= | ![]() |
Plot the normal surface:
In[14]:= | ![]() |
Out[14]= | ![]() |
A unit speed helix:
In[15]:= | ![]() |
Compute the normal vector:
In[16]:= | ![]() |
Out[16]= | ![]() |
Compute the curvature with the resource function Curvature:
In[17]:= | ![]() |
Out[17]= | ![]() |
Compute the torsion with the resource function CurveTorsion:
In[18]:= | ![]() |
Out[18]= | ![]() |
Compute the tangent vector with the resource function TangentVector:
In[19]:= | ![]() |
Out[19]= | ![]() |
Compute the binormal vector with the resource function BinormalVector:
In[20]:= | ![]() |
Out[20]= | ![]() |
Compute the following quantity:
In[21]:= | ![]() |
Out[21]= | ![]() |
The previous expression is the derivative of the normal:
In[22]:= | ![]() |
Out[22]= | ![]() |
Using FrenetSerretSystem, the normal vector is the second entry of the second List:
In[23]:= | ![]() |
Out[23]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License