Function Repository Resource:

NormalPlane

Source Notebook

Compute the normal plane of a space curve

Contributed by: Alfred Gray

ResourceFunction["NormalPlane"][c,t]

computes the normal plane of space curve c in parameter t.

Details and Options

The plane is spanned by the normal vector and the binormal vector.
ResourceFunction["NormalPlane"] gives an InfinitePlane object.

Examples

Basic Examples (3) 

Define a helix curve:

In[1]:=
helix = Entity["SpaceCurve", "Helix"]["ParametricEquations"][1, 1][t];

Compute the normal plane:

In[2]:=
ResourceFunction["NormalPlane"][helix, t]
Out[2]=

Plot the different planes while traversing the helix:

In[3]:=
Manipulate[
 With[{helix = Entity["SpaceCurve", "Helix"]["ParametricEquations"][1, 1][t]}, Show[ParametricPlot3D[helix, {t, 0, 3}], Graphics3D[{Opacity[.5], ResourceFunction["OsculatingPlane"][helix, t], ResourceFunction["RectifyingPlane"][helix, t], ResourceFunction["NormalPlane"][helix, t]} /. t -> tf], PlotRange -> {{-1, 1}, {0, 1}, {0, 3}}]], {{tf, 1}, 0, 3}]
Out[3]=

Publisher

Enrique Zeleny

Version History

  • 1.0.0 – 31 March 2020

Source Metadata

Related Resources

License Information