Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Wigner 9-j symbol
ResourceFunction["NineJSymbol"][{{j1,j2,j3},{j4,j5,j6},{j7,j8,j9}}] gives the values of the Wigner 9‐j symbol. |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
NineJSymbol works with integer and half‐integer arguments:
In[2]:= | ![]() |
Out[2]= | ![]() |
Evaluate for large arguments:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for inexact arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
NineJSymbol is invariant under transposition:
In[5]:= | ![]() |
Out[5]= | ![]() |
NineJSymbol is invariant under an even permutation of its rows or columns:
In[6]:= | ![]() |
Out[6]= | ![]() |
In[7]:= | ![]() |
Out[7]= | ![]() |
Under an odd permutation of its rows or columns, NineJSymbol gains an extra phase factor:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
When one of the entries is 0, NineJSymbol can be expressed in terms of SixJSymbol:
In[10]:= | ![]() |
Out[10]= | ![]() |
A message is issued and the result 0 returned for unphysical cases:
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License