Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Wigner 9-j symbol
ResourceFunction["NineJSymbol"][{{j1,j2,j3},{j4,j5,j6},{j7,j8,j9}}] gives the values of the Wigner 9‐j symbol. |
Evaluate numerically:
| In[1]:= | ![]() |
| Out[1]= |
NineJSymbol works with integer and half‐integer arguments:
| In[2]:= | ![]() |
| Out[2]= |
Evaluate for large arguments:
| In[3]:= | ![]() |
| Out[3]= | ![]() |
Evaluate for inexact arguments:
| In[4]:= | ![]() |
| Out[4]= |
NineJSymbol is invariant under transposition:
| In[5]:= | ![]() |
| Out[5]= |
NineJSymbol is invariant under an even permutation of its rows or columns:
| In[6]:= | ![]() |
| Out[6]= |
| In[7]:= | ![]() |
| Out[7]= |
Under an odd permutation of its rows or columns, NineJSymbol gains an extra phase factor:
| In[8]:= | ![]() |
| Out[8]= |
| In[9]:= | ![]() |
| Out[9]= |
When one of the entries is 0, NineJSymbol can be expressed in terms of SixJSymbol:
| In[10]:= | ![]() |
| Out[10]= |
A message is issued and the result 0 returned for unphysical cases:
| In[11]:= | ![]() |
| Out[11]= |
This work is licensed under a Creative Commons Attribution 4.0 International License