Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lommel polynomial
ResourceFunction["LommelR"][m,n,z] gives the Lommel polynomial |
Evaluate numerically:
In[1]:= | ![]() |
Out[1]= | ![]() |
Evaluate Lommel polynomials for various degrees:
In[2]:= | ![]() |
Out[2]= | ![]() |
Plot R4,2/3(x) over a subset of the reals:
In[3]:= | ![]() |
Out[3]= | ![]() |
Evaluate for complex arguments:
In[4]:= | ![]() |
Out[4]= | ![]() |
Evaluate to high precision:
In[5]:= | ![]() |
Out[5]= | ![]() |
The precision of the output tracks the precision of the input:
In[6]:= | ![]() |
Out[6]= | ![]() |
LommelR threads elementwise over lists:
In[7]:= | ![]() |
Out[7]= | ![]() |
Use the Lommel polynomial to express in terms of
and
:
In[8]:= | ![]() |
Out[8]= | ![]() |
A similar relation holds for :
In[9]:= | ![]() |
Out[9]= | ![]() |
A determinantal representation for LommelR:
In[10]:= | ![]() |
Out[10]= | ![]() |
Represent LommelR in terms of BesselJ:
In[11]:= | ![]() |
Out[11]= | ![]() |
Verify Crelier's formula:
In[12]:= | ![]() |
Out[12]= | ![]() |
Verify recurrence relations satisfied by LommelR:
In[13]:= | ![]() |
Out[13]= | ![]() |
In[14]:= | ![]() |
Out[14]= | ![]() |
Verify the differential equation satisfied by LommelR:
In[15]:= | ![]() |
Out[15]= | ![]() |
Express the derivative of LommelR in terms of LommelR:
In[16]:= | ![]() |
Out[16]= | ![]() |
In[17]:= | ![]() |
Out[17]= | ![]() |
In[18]:= | ![]() |
Out[18]= | ![]() |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License