Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Evaluate the Lommel polynomial
ResourceFunction["LommelR"][m,n,z] gives the Lommel polynomial . |
Evaluate numerically:
In[1]:= |
Out[1]= |
Evaluate Lommel polynomials for various degrees:
In[2]:= |
Out[2]= |
Plot R4,2/3(x) over a subset of the reals:
In[3]:= |
Out[3]= |
Evaluate for complex arguments:
In[4]:= |
Out[4]= |
Evaluate to high precision:
In[5]:= |
Out[5]= |
The precision of the output tracks the precision of the input:
In[6]:= |
Out[6]= |
LommelR threads elementwise over lists:
In[7]:= |
Out[7]= |
Use the Lommel polynomial to express in terms of and :
In[8]:= |
Out[8]= |
A similar relation holds for :
In[9]:= |
Out[9]= |
A determinantal representation for LommelR:
In[10]:= |
Out[10]= |
Represent LommelR in terms of BesselJ:
In[11]:= |
Out[11]= |
Verify Crelier's formula:
In[12]:= |
Out[12]= |
Verify recurrence relations satisfied by LommelR:
In[13]:= |
Out[13]= |
In[14]:= |
Out[14]= |
Verify the differential equation satisfied by LommelR:
In[15]:= |
Out[15]= |
Express the derivative of LommelR in terms of LommelR:
In[16]:= |
Out[16]= |
In[17]:= |
Out[17]= |
In[18]:= |
Out[18]= |
Wolfram Language 12.3 (May 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License