Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Get the isotomic conjugate of a point with respect to a triangle or tetrahedron
ResourceFunction["IsotomicConjugate"][simplex,p] gives the isotomic conjugate of point p with respect to the triangle or tetrahedron simplex. |
Find the isotomic conjugate of an arbitrary point and triangle:
In[1]:= | ![]() |
Out[1]= | ![]() |
Find the Gergonne and Nagel points of a triangle:
In[2]:= | ![]() |
Out[5]= | ![]() |
The Gergonne and Nagel points of a triangle are isotomic conjugates of each other:
In[6]:= | ![]() |
Out[6]= | ![]() |
Show the Gergonne and Nagel points:
In[7]:= | ![]() |
Out[7]= | ![]() |
Find the centroid of a tetrahedron:
In[8]:= | ![]() |
Out[9]= | ![]() |
The isotomic conjugate of the centroid is the same point:
In[10]:= | ![]() |
Out[10]= | ![]() |
A tetrahedron and its incenter:
In[11]:= | ![]() |
Out[12]= | ![]() |
Compute the isotomic conjugate of the incenter:
In[13]:= | ![]() |
Out[13]= | ![]() |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License