Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a hyperbolic polygon embedded in the Poincaré disk
ResourceFunction["HyperbolicPoincarePolygon"][{p1,…,pn}] represents a filled hyperbolic polygon with points pi, embedded in the Poincaré disk. |
A random hyperbolic triangle:
In[1]:= |
Show the hyperbolic triangle in the Poincaré disk:
In[2]:= |
Out[2]= |
Use directives to style the polygon:
In[3]:= |
In[4]:= |
Out[4]= |
In[5]:= |
Out[5]= |
A concave polygon:
In[6]:= |
Out[6]= |
A triangle with a side that goes through the origin:
In[7]:= |
Out[7]= |
A triangle with points at infinity:
In[8]:= |
Out[8]= |
HyperbolicPoincarePolygon returns a FilledCurve object:
In[9]:= |
Out[9]= |
All vertices of HyperbolicPoincarePolygon must lie within the unit disk:
In[10]:= |
Out[10]= |
Show a regular hyperbolic polygon in the Poincaré disk:
In[11]:= |
In[12]:= |
In[13]:= |
Out[13]= |
This work is licensed under a Creative Commons Attribution 4.0 International License