Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Represent a hyperbolic polygon embedded in the Poincaré disk
ResourceFunction["HyperbolicPoincarePolygon"][{p1,…,pn}] represents a filled hyperbolic polygon with points pi, embedded in the Poincaré disk. |
A random hyperbolic triangle:
| In[1]:= |
Show the hyperbolic triangle in the Poincaré disk:
| In[2]:= |
| Out[2]= | ![]() |
Use directives to style the polygon:
| In[3]:= |
| In[4]:= |
| Out[4]= | ![]() |
| In[5]:= |
| Out[5]= | ![]() |
A concave polygon:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
A triangle with a side that goes through the origin:
| In[7]:= |
| Out[7]= | ![]() |
A triangle with points at infinity:
| In[8]:= | ![]() |
| Out[8]= | ![]() |
HyperbolicPoincarePolygon returns a FilledCurve object:
| In[9]:= |
| Out[9]= |
All vertices of HyperbolicPoincarePolygon must lie within the unit disk:
| In[10]:= |
| Out[10]= |
Show a regular hyperbolic polygon in the Poincaré disk:
| In[11]:= |
| In[12]:= | ![]() |
| In[13]:= | ![]() |
| Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License