Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Generate the hat tiling using combinatorial hexagons
ResourceFunction["HatHexagons"][ind] plots the hexagonal initial condition for integer ind between 1 and 10. | |
ResourceFunction["HatHexagons"][ind, depth] plots the resulting configuration of hexagons after applying the inflation rule an integer number of times, depth ≥ 0. | |
ResourceFunction["HatHexagons"][ind, depth, rotation] rotates the resulting configuration by an angle rotation × π/3. | |
ResourceFunction["HatHexagons"][ind,…, type] changes the view to show "Hat" or "Cluster" tiles instead of hexagons. |
Plot one of ten initial conditions as a hexagon:
In[1]:= | ![]() |
Out[1]= | ![]() |
Compare different views of the same combinatorial hexagon:
In[2]:= | ![]() |
Out[2]= | ![]() |
Obtain successively larger fragments of a hat-hexagon tiling:
In[3]:= | ![]() |
Out[3]= | ![]() |
Compare with hat view:
In[4]:= | ![]() |
Out[4]= | ![]() |
And compare with cluster view:
In[5]:= | ![]() |
Out[5]= | ![]() |
Plot the ten initial conditions:
In[6]:= | ![]() |
Out[6]= | ![]() |
Their inflation images are not entirely unique:
In[7]:= | ![]() |
Out[7]= | ![]() |
Each tile can be placed in six distinct orientations:
In[8]:= | ![]() |
Out[8]= | ![]() |
Color the hat tiling using GrayLevel:
In[9]:= | ![]() |
Out[9]= | ![]() |
Add red EdgeForm:
In[10]:= | ![]() |
Out[10]= | ![]() |
The same style can also be introduced using ColorFunction:
In[11]:= | ![]() |
Out[11]= | ![]() |
Only three views are available:
In[12]:= | ![]() |
Out[12]= | ![]() |
Show a hexagon substitution:
In[13]:= | ![]() |
Out[13]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License