Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Return the Gergonne point of a triangle
ResourceFunction["GergonnePoint"][{p1,p2,p3}] returns the Gergonne point of the triangle defined by vertices p1,p2 and p3. |
Find the Gergonne point of three triangle vertices:
In[1]:= | ![]() |
Out[1]= | ![]() |
The perspectors concur at the Gergonne point (marked Ge in the diagram):
In[2]:= | ![]() |
Out[2]= | ![]() |
Compute the Gergonne point of a 3D triangle:
In[3]:= | ![]() |
Out[3]= | ![]() |
Show the Gergonne point and the triangle together:
In[4]:= | ![]() |
Out[4]= | ![]() |
The Gergonne point, incenter and de Longchamps point (Kimberling center X20) are collinear:
In[5]:= | ![]() |
In[6]:= | ![]() |
Show the collinearity:
In[7]:= | ![]() |
Out[7]= | ![]() |
Visualize the points and the line passing them:
In[8]:= | ![]() |
Out[8]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License