Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Invert a zero-frequency shift
ResourceFunction["FourierShiftInverse"][data] rearranges a zero-frequency-shifted Fourier transform data back to the original transform output. | |
ResourceFunction["FourierShiftInverse"][data, dim] operates along the dimension dim of data. |
Swap the left and right halves of a vector:
| In[1]:= |
| Out[1]= |
If a vector has an odd number of elements, then the middle element is considered part of the right half of the vector:
| In[2]:= |
| Out[2]= |
Swap the first quadrant of the matrix with the third, and the second quadrant with the fourth:
| In[3]:= | ![]() |
| Out[3]= |
Swap halves of each column of matrix:
| In[4]:= | ![]() |
| Out[4]= |
Swap halves of each row of matrix:
| In[5]:= | ![]() |
| Out[5]= |
FourierShiftInverse can be applied to a multidimensional array:
| In[6]:= | ![]() |
| Out[6]= | ![]() |
The dimension can be any valid part specification:
| In[7]:= | ![]() |
| Out[7]= | ![]() |
| In[8]:= | ![]() |
| Out[8]= | ![]() |
An optical low-pass filter model:
| In[9]:= | ![]() |
Apply the filter to a image:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
FourierShiftInverse is the inverse of the resource function FourierShift:
| In[11]:= |
| Out[11]= |
FourierShiftInverse does not support ragged arrays:
| In[12]:= |
| Out[12]= |
This work is licensed under a Creative Commons Attribution 4.0 International License