Function Repository Resource:

FastFourierGraph

Source Notebook

Create a fast Fourier transform calculation in graphical form

Contributed by: Bradley Klee

ResourceFunction["FastFourierGraph"][dim]

returns an edge-weighted, time-ordered multiway graph on 2dim×2dim vertices, which describes the fast Fourier transform of a length 2dim vector.

ResourceFunction["FastFourierGraph"][data]

takes a list of data with length 2dim and adds it to the graph under the annotation key VertexWeight.

Edge connections and edge weights (set to the phases) are determined by recursive decomposition of FourierMatrix[2dim].
Assuming data list input, ResourceFunction["FastFourierGraph"] takes the option "Evaluate" whose default value is False.
Setting "ComputeValues"True populates values through the Graph and returns a complete evaluation through the annotation key "VertexWeight".
This technique is slow compared to Compile-based methods, but still useful for teaching purposes and complexity analysis.

Examples

Basic Examples (5) 

Calculate the graph for the base case of the fast Fourier transform:

In[1]:=
ResourceFunction["FastFourierGraph"][1]
Out[1]=

Plot the next induced case:

In[2]:=
graph = ResourceFunction["FastFourierGraph"][2]
Out[2]=

Color edges according to phases:

In[3]:=
Graph[graph, EdgeStyle -> MapThread[
   #1 -> Darker[Hue[1/10 + (9/10) (1/2) Mod[Arg[#2]/Pi, 2]]] &,
   {EdgeList[graph], AnnotationValue[graph, EdgeWeight]
    }]]
Out[3]=

Notice n log n complexity in rectangular dimensions of subsequent graphs:

In[4]:=
With[{graph0 = ResourceFunction["FastFourierGraph"][#]},
   Graph[graph0, EdgeStyle -> MapThread[# -> Darker[
Hue[1/10 + ((9/10) (1/2)) Mod[Arg[#2]/Pi, 2]]]& , {
EdgeList[graph0], AnnotationValue[graph0, EdgeWeight]}]]] & /@ Range[4]
Out[4]=

Blow up the graphs to see their free-form structure using "SpringElectricalEmbedding":

In[5]:=
With[{graph0 = ResourceFunction["FastFourierGraph"][#]},
   Graph[graph0, EdgeStyle -> MapThread[# -> Darker[
Hue[1/10 + ((9/10) (1/2)) Mod[Arg[#2]/Pi, 2]]]& , {
EdgeList[graph0], AnnotationValue[graph0, EdgeWeight]}],
    GraphLayout -> "SpringElectricalEmbedding",
    VertexCoordinates -> Automatic]] & /@ Range[4]
Out[5]=

Create a graph from data:

In[6]:=
ResourceFunction["FastFourierGraph"][{a, b}]
Out[6]=

Use the option "ComputeValues"True to compute the transformation values while generating the graph:

In[7]:=
graph = ResourceFunction["FastFourierGraph"][{a, b, c, d}, "ComputeValues" -> True]
Out[7]=

See the fast Fourier transformation values by retrieving the VertexWeight:

In[8]:=
AnnotationValue[graph, VertexWeight]
Out[8]=

Depict results of the calculation as above:

In[9]:=
Graph[graph, VertexLabels -> MapThread[Rule,
   {VertexList[graph], AnnotationValue[graph, VertexWeight]}]]
Out[9]=

Compare with the standard method using FourierMatrix:

In[10]:=
Expand[Sqrt[4] FourierMatrix[4] . {a, b, c, d}]
Out[10]=

Apply a similar validation technique for different input lengths:

In[11]:=
Function[{exp}, ComplexExpand[Subtract[
    With[{graph = ResourceFunction["FastFourierGraph"][
        c /@ Range[2^exp], "ComputeValues" -> True]},
     Part[Sort@Transpose[{VertexList@graph,
         AnnotationValue[graph, VertexWeight]}],
      -2^exp ;; -1, 2]],
    Sqrt[2^exp] Dot[FourierMatrix[2^exp],
      (c /@ Range[2^exp])]]]] /@ Range[4]
Out[11]=

Compare with ButterflyGraph:

In[12]:=
IsomorphicGraphQ[ButterflyGraph[#],
   UndirectedGraph[VertexDelete[
     ResourceFunction["FastFourierGraph"][#], {{x_ /; x < (# - 1), _}}]
    ]] & /@ Range[5]
Out[12]=

Input should be a list of length 2n for some integer n>0:

In[13]:=
ResourceFunction["FastFourierGraph"][Range[1]]
Out[13]=
In[14]:=
ResourceFunction["FastFourierGraph"][Range[31]]
Out[14]=

Timing statistics look very slow compared to the built-in Fourier:

In[15]:=
Grid[{{Text@"Evaluation Time"}, {
   AbsoluteTiming[Fourier[RandomReal[1, 128]];
     ][[1]]}}, Spacings -> {1, 1}]
Out[15]=
In[16]:=
Grid[{Text /@ {"Compile Time", "Evaluation Time"},
  {#[[1]], #[[2]] - #[[1]]} &@{
    AbsoluteTiming[
      ResourceFunction["FastFourierGraph"][RandomReal[1, 128]];][[
     1]],
    AbsoluteTiming[
      ResourceFunction["FastFourierGraph"][N@RandomReal[1, 128],
        "ComputeValues" -> True];][[1]]}},
 Spacings -> {2, 1}]
Out[16]=

Compile time is relatively slow compared to ButterflyGraph:

In[17]:=
Grid[Prepend[
  SetAccuracy[{AbsoluteTiming[
        ResourceFunction["FastFourierGraph"][#]][[1]],
      AbsoluteTiming[ButterflyGraph[#]][[1]]}, 6] & /@ Range[5],
  {"FastFourierGraph", "ButterflyGraph"}], Spacings -> {2, 0.5},
 Alignment -> Center]
Out[17]=

Follow the different paths a value can take from input to output:

In[18]:=
Grid[With[{graph = ResourceFunction["FastFourierGraph"][2]},
  Outer[Graph[HighlightGraph[graph,
      Graph[DirectedEdge @@@ Partition[
         First[FindPath[graph, {0, #1}, {3, #2}]], 2, 1]]],
     VertexCoordinates -> Automatic,
     GraphLayout -> "SpringElectricalEmbedding"] &,
   Range[4], Range[4], 1]], Frame -> All, FrameStyle -> LightGray]
Out[18]=

Plot an intensity profile:

In[19]:=
With[{data = AnnotationValue[
     ResourceFunction["FastFourierGraph"][ReplacePart[Table[0, {64}],
       # -> 1 & /@ Range[4]], "ComputeValues" -> True], VertexWeight][[-64 ;; -1]]},
 ListPlot[RotateRight[Re[Conjugate[#] #] &@data, 32],
  AxesLabel -> {"Position", "Intensity"}]
 ]
Out[19]=

Publisher

Brad Klee

Version History

  • 1.0.0 – 26 April 2022

Source Metadata

Related Resources

License Information