Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Visualize a complex function as an array of bubbles
ResourceFunction["ComplexBubblePlot"][f,{z,zmin,zmax}] generates a plot of f as an array of disks scaled by Abs[f], over the complex rectangle with corners zmin and zmax. |
ColorFunction | Automatic | how to apply coloring to disks |
ColorFunctionScaling | True | whether to scale arguments to ColorFunction |
Frame | Automatic | whether to put a frame around the plot |
PlotLegends | None | legends for color gradients |
PlotPoints | Automatic | the number of disks in each direction |
PlotRange | Automatic | range of values to include |
PlotRangeClipping | True | whether to clip at the plot range |
WorkingPrecision | MachinePrecision | the precision used in internal computations |
Plot a complex function:
In[1]:= | ![]() |
Out[1]= | ![]() |
Include a legend showing how the colors vary from -π to π:
In[2]:= | ![]() |
Out[2]= | ![]() |
The identity function:
In[3]:= | ![]() |
Out[3]= | ![]() |
Visualize various Power functions:
In[4]:= | ![]() |
Out[4]= | ![]() |
Visualize a function with an essential singularity:
In[5]:= | ![]() |
Out[5]= | ![]() |
Use a different color function:
In[6]:= | ![]() |
Out[6]= | ![]() |
Arg[f] is scaled by default. Use ColorFunctionScaling to change it:
In[7]:= | ![]() |
Out[7]= | ![]() |
The Automatic legend shows the association between color and phase:
In[8]:= | ![]() |
Out[8]= | ![]() |
Use more disks:
In[9]:= | ![]() |
Out[9]= | ![]() |
Evaluate functions using arbitrary-precision arithmetic:
In[10]:= | ![]() |
Out[10]= | ![]() |
Visualize the function -ⅈza with varying a:
In[11]:= | ![]() |
Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License