Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Visualize a complex function as an array of bubbles
ResourceFunction["ComplexBubblePlot"][f,{z,zmin,zmax}] generates a plot of f as an array of disks scaled by Abs[f], over the complex rectangle with corners zmin and zmax. |
| ColorFunction | Automatic | how to apply coloring to disks |
| ColorFunctionScaling | True | whether to scale arguments to ColorFunction |
| Frame | Automatic | whether to put a frame around the plot |
| PlotLegends | None | legends for color gradients |
| PlotPoints | Automatic | the number of disks in each direction |
| PlotRange | Automatic | range of values to include |
| PlotRangeClipping | True | whether to clip at the plot range |
| WorkingPrecision | MachinePrecision | the precision used in internal computations |
Plot a complex function:
| In[1]:= |
| Out[1]= | ![]() |
Include a legend showing how the colors vary from -π to π:
| In[2]:= |
| Out[2]= | ![]() |
The identity function:
| In[3]:= |
| Out[3]= | ![]() |
Visualize various Power functions:
| In[4]:= | ![]() |
| Out[4]= | ![]() |
Visualize a function with an essential singularity:
| In[5]:= |
| Out[5]= | ![]() |
Use a different color function:
| In[6]:= |
| Out[6]= | ![]() |
Arg[f] is scaled by default. Use ColorFunctionScaling to change it:
| In[7]:= |
| Out[7]= | ![]() |
The Automatic legend shows the association between color and phase:
| In[8]:= |
| Out[8]= | ![]() |
Use more disks:
| In[9]:= |
| Out[9]= | ![]() |
Evaluate functions using arbitrary-precision arithmetic:
| In[10]:= |
| Out[10]= | ![]() |
Visualize the function -ⅈza with varying a:
| In[11]:= | ![]() |
| Out[11]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License